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The of P is the dimension of its affine hull.
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A (convex) polyhedron P is the intersection of a finite family of
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Polyhedra and polytopes

Definition
A (convex) polytope P is the convex hull of a finite set of points
in RY.
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Polyhedra and polytopes

Every polytope is a polyhedron, every bounded polyhedron is a
polytope.
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Polyhedra and polytopes

Every polytope is a polyhedron, every bounded polyhedron is a
polytope.

The dimension of P is the dimension of its affine hull.
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Faces of P

Let P be a polytope (or polyhedron) and let H be a hyperplane
not cutting,
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Faces of P

Let P be a polytope (or polyhedron) and let H be a hyperplane
not cutting, but touching P.
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Faces of P

We say that HN P is a face of P.
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Faces of P

Faces of dimension O are called vertices.
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Faces of P

Faces of dimension 1 are called edges.




The Conjecture Motivation: LP Cases and bounds The d-step Theorem Three “classical” counter-examples
0@000000 0000000 0000 000000 0000000

Faces of P

Faces of dimension d — 1 are called facets.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,

undirected)
/ [ J

°
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\\.

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v.

For example, d(u, v) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,

undirected)
/ [ J

°
o="* \
\\.
The diameter of G(P) (or of P) is the maximum distance among
its vertices:

diam(P) = max{d(u,v) : u,v € V}.

-



For every polytope P with n facets and dimension d,

diam(P) < n—d.
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The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d,

diam(P) < n—d.

polytope facets dimension n—d diameter
cube 6 3 3 3
dodecahedron 12 3 9 5
octahedron 8 3 5 2
k-prism k+2 3 k-1 |k/2]+1
n-cube 2n n n n



@ It was communicated by W. M. Hirsch to G. Dantzig in
1957 (Dantzig had recently invented the simplex method
for linear programming).

@ Several special cases have been proved: d < 3,n—d < 6,
0/1-polytopes, ...

© But in the general case we do not even know of a
polynomial bound for diam(P) in terms of nand d.

@ In 1967, Klee and Walkup disproved the unbounded case.

© In 2010 I disproved the bounded case. But the construction
does not produce polytopes whose diameter is more than
a constant times the Hirsch bound.
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Brief history of the conjecture

@ It was communicated by W. M. Hirsch to G. Dantzig in
1957 (Dantzig had recently invented the simplex method
for linear programming).
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Brief history of the conjecture
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1957 (Dantzig had recently invented the simplex method
for linear programming).

@ Several special cases have been proved: d < 3,
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@ It was communicated by W. M. Hirsch to G. Dantzig in
1957 (Dantzig had recently invented the simplex method
for linear programming).

@ Several special cases have been proved: d < 3,n—d <6,
0/1-polytopes, ...

© But in the general case we do not even know of a
polynomial bound for diam(P) in terms of nand d.
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@ In 1967, Klee and Walkup disproved the unbounded case.
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@ It was communicated by W. M. Hirsch to G. Dantzig in
1957 (Dantzig had recently invented the simplex method
for linear programming).

@ Several special cases have been proved: d < 3,n—d <6,
0/1-polytopes, ...

© But in the general case we do not even know of a
polynomial bound for diam(P) in terms of nand d.

@ In 1967, Klee and Walkup disproved the unbounded case.

© In 2010 I disproved the bounded case.
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@ It was communicated by W. M. Hirsch to G. Dantzig in
1957 (Dantzig had recently invented the simplex method
for linear programming).

@ Several special cases have been proved: d < 3,n—d <6,
0/1-polytopes, ...

© But in the general case we do not even know of a
polynomial bound for diam(P) in terms of nand d.

@ In 1967, Klee and Walkup disproved the unbounded case.

© In 2010 I disproved the bounded case. But the construction
does not produce polytopes whose diameter is more than
a constant times the Hirsch bound.
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“As simple as possible”

Definition

A d-polytope/polyhedron is simple if at every vertex exactly d
facets meet. (~ facet-defining hyperplanes are “in general
position”).
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The Conjecture
00000e00

“As simple as possible”

Definition

A d-polytope/polyhedron is simple if at every vertex exactly d
facets meet. (~ facet-defining hyperplanes are “in general
position”).

A d-polytope is simplicial if every facet has exactly d vertices.
That is, if every proper face is a simplex. (~ vertices are “in
general position”).

Of course, the (polar) dual of a simple polytope is simplicial,
and vice-versa.

Lemma (Klee 1964)

For every n and d the maximum diameter of d-polytopes /
d-polyhedra with n facets is achieved at a simple one.
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“As simple as possible”

Remark

We will often dualize the diameter problem. We want to travel
from one facet to another of a polytope Q (the polar of P) along
the “dual graph” whose edges correspond to ridges of Q.
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The Conjecture
00000080

“As simple as possible”

Remark

We will often dualize the diameter problem. We want to travel
from one facet to another of a polytope Q (the polar of P) along
the “dual graph” whose edges correspond to ridges of Q.

By the previous lemma we can restrict our attention to simplicial
polytopes, whose face lattice is a simplicial complex with the
topology of a (d — 1)-sphere. (A simplicial (d — 1)-sphere).
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Q: What is the polar of a (simple) unbounded polyhedron?



The Conjecture Motivation: LP Cases and bounds The d-step Theorem Three “classical” counter-examples
0000000® 0000000 0000 000000 0000000

“...but not simpler”

Q: What is the polar of a (simple) unbounded polyhedron?
A: It must be a simplicial complex with the topology of a ball and
with some “convexity constraint”

12
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“...but not simpler”

Q: What is the polar of a (simple) unbounded polyhedron?
A: It must be a simplicial complex with the topology of a ball and
with some “convexity constraint”

The polar of an unbounded d-polyhedron with n facets “is” a
regular triangulation of n points in R9-1,
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A linear program is the problem of maximization (or
minimization) of a linear functional subject to linear inequality
constraints. That is:

Given

@ asystem Mx < b of linear inequalities (b € R", M € RIx"),
and

@ an objective function ¢! € R?”
Find
@ max{c!-x: x € RY Mx < b} (and a point x where the
maximum is attained).

13
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Linear programming

A linear program is the problem of maximization (or
minimization) of a linear functional subject to linear inequality
constraints. That is:

Given

@ a system Mx < b of linear inequalities (b € R", M € RIxN),
and

@ an objective function c¢f € R?”
Find

@ max{c!- x: x € R, Mx < b} (and a point x where the
maximum is attained).

13
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Linear programming

If one would take statistics about which mathematical
problem s using up most of the computer time in the
world, then (not including database handling problems like
sorting and searching) the answer would probably be
linear programming.

(Laszl6 Lovasz, 1980)
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@ It was invented in the 1940’s by G. Dantzig, L. Kantorovich
and J. von Neumann.

In particular, in 1947 G. Dantzig devised the simplex
method: The first practical algorithm for solving linear
programs (and still the one most used).

Around 1980 two polynomial time algorithms for linear
programming were proposed by Khachiyan and Karmakar
(ellipsoid and interior point method).

None of these algorithms is strongly polynomial. Finding
strongly polynomial algorithms for linear plogrammmg is
one of the *

proposed by S. Smale in 2000.

15
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A brief history of linear programming

@ It was invented in the 1940’s by G. Dantzig, L. Kantorovich
and J. von Neumann.

@ In particular, in 1947 G. Dantzig devised the simplex
method: The first practical algorithm for solving linear
programs (and still the one most used).
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@ It was invented in the 1940’s by G. Dantzig, L. Kantorovich
and J. von Neumann.

@ In particular, in 1947 G. Dantzig devised the simplex
method: The first practical algorithm for solving linear
programs (and still the one most used).

@ Around 1980 two polynomial time algorithms for linear
programming were proposed by Khachiyan and Karmakar
(ellipsoid and interior point method).

@ None of these algorithms is strongly polynomial. Finding
strongly polynomial algorithms for linear programming is
one of the “mathematical problems for the 21st century”
proposed by S. Smale in 2000.
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The simplex method is not (known to be) polynomial. More

precisely, it is known with the
that have been proposed so far.

The Klee-Minty cube

It is a cube with slanted
faces in which the “biggest
slope” rule is led to take an
exponentially long path.



The simplex method is not (known to be) polynomial.
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Complexity of the simplex method

The simplex method is not (known to be) polynomial. More
precisely, it is known not to be polynomial with the pivot rules
that have been proposed so far.
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The set of feasible solutions P = {x ¢ R : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.

The optimal solution (if it exists) is always attained at a
vertex.

The simplex method [Dantzig 1947] solves the linear

program by starting at any feasible vertex and moving
along the graph of P, in a monotone fashion, until the
optimum is attained.

In particular, (the polynomial version of) the Hirsch
conjecture is related to the question of whether the simplex
method is a polynomial-time algorithm. A polynomial pivot
rule for the simplex method would answer Smale’s
guestion in the affirmative.
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@ The set of feasible solutions P = {x € RY : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.
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Connection to the Hirsch conjecture

@ The set of feasible solutions P = {x € RY : Mx < b} is a
polyhedron P with (at most) n facets and d dimensions.

@ The optimal solution (if it exists) is always attained at a
vertex.
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Complexity of the simplex method

The simplex method is not (known to be) polynomial. More
precisely, it is known not to be polynomial with the pivot rules
that have been proposed so far.

Yet:
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Complexity of the simplex method

The simplex method is not (known to be) polynomial. More
precisely, it is known not to be polynomial with the pivot rules
that have been proposed so far.

Yet:

The number of steps [that the simplex method takes]
to solve a problem with m equality constraints in n
nonnegative variables is almost always at most a
small multiple of m, say 3m.

(M. Todd, 2011)
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Complexity of the simplex method

The simplex method is not (known to be) polynomial. More
precisely, it is known not to be polynomial with the pivot rules
that have been proposed so far.

Yet:

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2011)

18



Motivation: LP
0000080

Complexity of the simplex method

The simplex method is not (known to be) polynomial. More
precisely, it is known not to be polynomial with the pivot rules
that have been proposed so far.

Yet:

The simplex method was chosen one of the “10
algorithms with the greatest influence on the
development and practice of science and engineering
in the 20th century” in the selection made by the
journal Computing in Science and Engineering in the
year 2000.
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Polynomial Hirsch conjecture

In this sense, more important than the standard Hirsch
conjecture (which is false) is the following “polynomial version”
of it:
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Polynomial Hirsch conjecture

In this sense, more important than the standard Hirsch
conjecture (which is false) is the following “polynomial version”
of it:

Polynomial Hirsch Conjecture

Let H(n, d) denote the maximum diameter of d-polyhedra with
n facets.
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Polynomial Hirsch conjecture

In this sense, more important than the standard Hirsch
conjecture (which is false) is the following “polynomial version”
of it:

Polynomial Hirsch Conjecture

Let H(n, d) denote the maximum diameter of d-polyhedra with
n facets. There is a constant k such that:

H(n,d) < n*, vn, d.
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Hirsch conjecture holds for

@ d < 3: [Klee 1966].
@ n—d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
@ H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]

H(11,4) = 6 [Schuchert, 1995],

H(12,4) = H(12,5) = 7 [Bremner et al. 2012].

@ 0-1 polytopes [Naddef 1989]

@ Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]
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@ n— d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]

@ H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = H(12,5) = 7 [Bremner et al. 2012].

@ 0-1 polytopes [Naddef 1989]

@ Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]
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@ n— d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
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Some known cases

Hirsch conjecture holds for
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Some known cases
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@ d < 3: [Klee 1966].
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@ H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
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@ 0-1 polytopes [Naddef 1989]
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@ d < 3: [Klee 1966].
@ n— d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
@ H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
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Theorem [Kalai-Kleitman 1992]
H(n,d) < n®%9+2  vyn d.
and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules (“random facet”) for the simplex
method which yield an algorithm with complexity

eO(\/nIogd)'



H(n,d) < n°%29+2  yn d.
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H(n,d) < n°%29+2  yn d.

and a subexponential simplex algorithm:
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A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
H(n,d) < n°%9+2  yn d.
and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules (“random facet”) for the simplex
method which yield an algorithm with complexity

eO(\/nIogd)‘
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Theorem [Barnette 1967, Larman 1970]
H(n,d) < n29=3  vn,d.

(... there are also linear time algorithms for linear programming
in fixed dimension [Megiddo 1984]).



H(n,d) < n2°=3  vn,d.

29
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A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]
H(n,d) < n29=3  vn,d.

(... there are also linear time algorithms for linear programming
in fixed dimension [Megiddo 1984]).

29
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Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we
consider a random perturbation of the matrix, within a
parameter e (normal distribution).

29
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Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we
consider a random perturbation of the matrix, within a
parameter e (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected running time of the simplex method (with the
shadow boundary pivot rule) on the perturbed polyhedron is
polynomial in d and %, and polylogarithmic in n.
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It holds with equality in simplices (n=d + 1,6 = 1) and
cubes (n = 2d, § = d).

If P and Q satisfy it, then so does P x Q: (P x Q) =
I(P)+4(Q).

For every n < 2d, there are polytopes in which the bound
Is tight (products of simplices).

We call these “Hirsch-sharp” polytopes.

For every n > d, itis easy to construct unbounded
polyhedra where the bound is tight.

H(n, d) is weakly monotone w.r.t. (n — d, d), notto (n,d).

24



@ It holds with equality in simplices (n=d + 1, § = 1) and
cubes (n = 2d, § = d).
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Why is n — d a “reasonable” bound?

@ It holds with equality in simplices (n=d + 1, § = 1) and
cubes (n = 2d, § = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
(P)+4(Q).

24
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Why is n — d a “reasonable” bound?

@ It holds with equality in simplices (n=d + 1, § = 1) and
cubes (n = 2d, § = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
I(P) +4(Q).

@ For every n < 2d, there are polytopes in which the bound
is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.
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Why is n — d a “reasonable” bound?

@ It holds with equality in simplices (n=d + 1, § = 1) and
cubes (n = 2d, § = d).

@ If P and Q satisfy it, then so does P x Q: (P x Q) =
I(P) +4(Q).

@ For every n < 2d, there are polytopes in which the bound
is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

@ For every n > d, itis easy to construct unbounded
polyhedra where the bound is tight.

@ H(n,d) is weakly monotone w.r.t. (n—d, d),

24






O-0



00000000 0000000 0000 O®0000

d(u, v)=2

u’

du’, v’)=2

0000000




Hirsch conjecture has the following interpretations:
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let v and v be two complementary vertices
(no common facet):

26



The d-step Theorem
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let v and v be two complementary vertices
(no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon
a facet containing v and we enter a facet containing v.
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The d-step Theorem
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let v and v be two complementary vertices
(no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon
a facet containing v and we enter a facet containing v.

“d-step conjecture” < Hirsch for n = 24d.

26
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Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.
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The d-step Theorem
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Why is n — d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting path conjecture

It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path = Hirsch.

26



Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H(2Kk — 1,k —1) < H2k, k) = H2k + 1,k +1) = - --



Hirsch < d-step < non-revisiting path.
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Hirsch < d-step < non-revisiting path.

Proof:
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Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{d(P) : Pis a d-polytope with n
facets}.
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Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{d(P) : Pis a d-polytope with n
facets}. The basic idea is:
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H(2k — 1,k —1) < H2k, k) = H2k + 1,k + 1) = - --
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@EKk—1,k—1) < H(2k, k) = H2k + 1,k +1) = - --

@ If n < 2d, then H(n,d) < H(n—1,d — 1) because every
pair of vertices u and v lie in a common facet F,

27
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@2k-1,k—-1)<H(2k,k)=H2k+1,k+1)=---
@ If n < 2d, then H(n,d) < H(n—1,d — 1) because every
pair of vertices u and v lie in a common facet F, which is a

polytope with one less dimension and (at least) one less
facet

27



The d-step Theorem
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@2k-1,k—-1)<H(2k,k)=H2k+1,k+1)=---
@ If n < 2d, then H(n,d) < H(n—1,d — 1) because every
pair of vertices u and v lie in a common facet F, which is a

polytope with one less dimension and (at least) one less
facet (induction on nand n— d).
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@EKk—1,k—1) < H(2k, k) = H2k + 1,k +1) = - --
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@EKk—1,k—1) < H(2k, k) = H2k + 1,k +1) = - --

@ Foreverynand d, H(n,d) < H(n+1,d + 1):
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@EKk—1,k—1) < H(2k, k) = H2k + 1,k +1) = - --

@ Foreverynand d, H(n,d) < H(n+1,d +1): LetF be
any facet of P and let P’ be the wedge of P over F. Then:
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Why is n — d a “reasonable” bound?

Theorem [Klee-Walkup 1967]
Hirsch < d-step < non-revisiting path.

Proof: Let H(n,d) = max{J(P) : P is a d-polytope with n
facets}. The basic idea is:

< H@EKk—1,k—1) < H(2k, k) = H2k + 1,k +1) = - --

@ Foreverynand d, H(n,d) < H(n+1,d +1): LetF be
any facet of P and let P’ be the wedge of P over F. Then:

dp (U, V') > dp(u, v).

27
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The d-step Theorem follows from and implies (respectively) the
following:
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Two important remarks

The d-step Theorem follows from and implies (respectively) the
following:

Lemma

For every d-polytope P with n facets and diameter ¢ there is a
d + 1-polytope with one more facet and the same diameter §.

29
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Two important remarks

The d-step Theorem follows from and implies (respectively) the
following:

Lemma

For every d-polytope P with n facets and diameter ¢ there is a
d + 1-polytope with one more facet and the same diameter §.

Corollary
There is a function f(n — d) such that

H(n,d) < f(n—d), vn,d.

29
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Three variations of the Hirsch conjecture

The feasible region of a linear program can be an unbounded
polyhedron, instead of a polytope.

20
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Three variations of the Hirsch conjecture

The feasible region of a linear program can be an unbounded
polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:

The diameter of any polyhedron P with dimension d and n
facets is at most n — d.

Remark: this was the original conjecture by Hirsch.

20
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For the simplex method, we are only interested in monotone, w.
r. t. a certain functional ¢, paths.



Three “classical” counter-examples
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Three variations of the Hirsch conjecture

For the simplex method, we are only interested in monotone, w.
r. t. a certain functional ¢, paths.

Monotone version of the Hirsch conjecture:

For any polytope/polyhedron P with dimension d and n facets,
any linear functional ¢ and any initial vertex v:

There is a monotone path of length at most n — d from v to the
¢-maximal vertex.

20



W. |. 0. g. we can assume that our polytope is simple...
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Three variations of the Hirsch conjecture

W. l. 0. g. we can assume that our polytope is simple...and
state the conjecture for the polar (simplicial) polytope, which is a
simplicial (d — 1)-sphere.

20
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Three variations of the Hirsch conjecture

W. l. 0. g. we can assume that our polytope is simple...and
state the conjecture for the polar (simplicial) polytope, which is a
simplicial (d — 1)-sphere.

Once we are there, why not remove geometry:
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Three variations of the Hirsch conjecture

W. l. 0. g. we can assume that our polytope is simple...and
state the conjecture for the polar (simplicial) polytope, which is a
simplicial (d — 1)-sphere.

Once we are there, why not remove geometry:

Combinatorial version of the Hirsch conjecture:

For any simplicial sphere of dimension d — 1 with n vertices, the
adjacency graph among d — 1-simplices has diameter at most
n—d.

20
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Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three were known to be false (although all known
counter-examples are only by a linear factor):

21
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three were known to be false (although all known
counter-examples are only by a linear factor):

@ There are unbounded polyhedra of dimension 4 with 8
facets and diameter 5 [Klee-Walkup, 1967].
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three were known to be false (although all known
counter-examples are only by a linear factor):

@ There are unbounded polyhedra of dimension 4 with 8
facets and diameter 5 [Klee-Walkup, 1967].

@ There are polytopes of dimension 4 with 8 facets and
vertices at “monotone distance” 5 from the optimum [Todd
1980].
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Three counterexamples

Any of these three versions (combinatorial, monotone,
unbounded) would imply the Hirsch conjecture...

... but the three were known to be false (although all known
counter-examples are only by a linear factor):

@ There are unbounded polyhedra of dimension 4 with 8
facets and diameter 5 [Klee-Walkup, 1967].

@ There are polytopes of dimension 4 with 8 facets and
vertices at “monotone distance” 5 from the optimum [Todd
1980].

@ There are spheres of diameter bigger than Hirsch [Walkup
1978, dimension 27; Mani-Walkup 1980, dimension 11].

21
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The Klee-Walkup non-Hirsch (8,4)-polyhedron

“The polar of an unbounded 4-polyhedron with eight facets is a
regular triangulation of eight points in R3".
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The Klee-Walkup non-Hirsch (8,4)-polyhedron
‘Rememberthat

“The polar of an unbounded 4-polyhedron with eight facets is a
regular triangulation of eight points in R3".

So, it suffices to show that:

Theorem

There is a regular triangulation of a 4-polytope with 8 vertices
that has two tetrahedra at distance five.

292
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The Klee-Walkup non-Hirsch (8,4)-polyhedron

This is a (Cayley Trick view of a) 3D triangulation with 8 vertices and
diameter 5:

a

f.\$.
g e

23
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The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is
equivalent to the existence of a 4-polytope with 9 facets and
with diameter 5:

24
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The Klee- Walkup Hirsch- sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is
equivalent to the existence of a 4-polytope with 9 facets and
with diameter 5:

H(9,4) =5 <« counter-example to unbounded Hirsch
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The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is
equivalent to the existence of a 4-polytope with 9 facets and
with diameter 5:

H(9,4) =5 <« counter-example to unbounded Hirsch

From a bounded (9,4)-polytope you get an unbounded
(8,4)-polytope with (at least) the same diameter, by moving the
“extra facet” to infinity.

24
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The Klee-Walkup Hirsch-sharp (9,4)-polytope

The counter-example to the unbounded Hirsch conjecture is
equivalent to the existence of a 4-polytope with 9 facets and
with diameter 5:
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In your bounded (9,4)-polytope you can make monotone paths
from u to v necessarily long via a projective transformation that
makes the “extra facet” be parallel to a supporting hyperplane
of one of your vertices u and v

25
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The monotone Hirsch conjecture is false

H(9,4) =5 = counter-example to monotone Hirsch

In your bounded (9,4)-polytope you can make monotone paths
from u to v necessarily long via a projective transformation that
makes the “extra facet” be parallel to a supporting hyperplane
of one of your vertices u and v

25
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The

3-sphere

Mani and Walkup constructed a simplicial 3-ball with 16 vertices
and with two tetrahedra abcd and mnop with the property that
any path from abcd to mnop must revisit a vertex previously
abandonded.

26
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The Mani-Walkup “always revisiting” simplicial
3-sphere

Mani and Walkup constructed a simplicial 3-ball with 16 vertices
and with two tetrahedra abcd and mnop with the property that
any path from abcd to mnop must revisit a vertex previously
abandonded.

By the (combinatorial) d-step theorem, that implies the exis-
tence of a “non-Hirsch” 11-sphere with 24 vertices (n— d = 12)
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The Mani-Walkup “always revisiting” simplicial
3-sphere

Mani and Walkup constructed a simplicial 3-ball with 16 vertices
and with two tetrahedra abcd and mnop with the property that
any path from abcd to mnop must revisit a vertex previously
abandonded.

By the (combinatorial) d-step theorem, that implies the exis-
tence of a “non-Hirsch” 11-sphere with 24 vertices (n— d = 12)

The key to the construction is in a subcomplex of two triangu-
lated octagonal bipyramids.
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