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Numerical Algebra, Matrix Theory, Differential-Algebraic Equations,
and Control Theory

This conference aims at bringing together experts in the fields of nu-
merical (linear) algebra, matrix theory, differential-algebraic equa-
tions and control theory. These mathematical research areas are
strongly related and they often occur in the same real-world appli-
cation. Main areas where such applications emerge are computa-
tional engineering and sciences, but increasingly also social sciences
and economics.

The conference is dedicated to Volker Mehrmann on the occasion
of his 60th birthday. Volker Mehrmann is a leading expert in the
areas of the conference, and in a unique manner unifies expertise
in the mathematical fields providing the title of this conference.

c©2015 Fernando Domingo Aldama
(Ediciones EL PÁIS, SL)
All rights reserved.

Web page and information email

Conference web page: http://www3.math.tu-berlin.de/multiphysics/VM60/

Conference email: vm60info@math.tu-berlin.de

Location

TU Berlin
Institut für Mathematik
Straße des 17. Juni 136
10623 Berlin, Germany

Presentation preparation for talks and posters

Oral presentations:

The conference room will be equipped with a computer running MS Windows with MS Office and
Adobe Acrobat Reader. A wireless presenter will be available. Please upload your presentation as soon
as possible, at the latest in the break before the scheduled talk. Speakers may use their own laptops if
they wish. In any case, please check your hardware and presentation in advance.

Poster presentations:

Presentation boards will be available from Thursday morning begining at 8:00 on the first floor along
the gallery, where also the coffee breaks will take place. Please use the board that has a printout of
your abstract attached to it. For fixing the poster, power strips will be available at the registration
desk. Please attach your poster to the presentation board as soon as possible, but at the latest in the
break preceeding the poster session.
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Internet access

Eduroam is available via WiFi in the Math building and on the campus of the TU Berlin. Guest accounts
for WiFi can be provided. For more information please ask the staff at the registration desk.

Coffee breaks, lunch

The coffee breaks take place on the first floor of the Math building outside of the conference room
MA001 and along the gallery.

Lunch options:
- in the ”Kantine” on the 9th floor of the Math building (cash only),

- in the cafeteria near the conference room on the ground floor of the Math building (cash only),

- in the ”Café Campus” behind the Math building (see map on page 86, cash only),

- in the ”Mensa” (Hardenbergstraße 34, see map on page 86, only with ”MensaCard” (prepaid
card) available in the Mensa, prepay with cash only), or

- in the Knesebeckstraße (see map on page 86), where you can find several restaurants.

Welcome reception & conference dinner

Welcome reception:

“Lichthof”, Main Building of the TU Berlin (Straße des 17. Juni 135, 10623 Berlin)
on Wednesday, May 6 at 18:30.

The “Lichthof” is located on the first floor of the main building of the TU Berlin, marked as “Haupt-
gebäude” on the map on page 86. The main building is located across the street from the main entrance
of the Math building.

Conference dinner :

Restaurant ”Alte Pumpe” (Lützowstraße 42, 10785 Berlin)
on Friday, May 8 at 19:30.

A buffet will be offered with several courses including vegetarian meals. A selection of drinks will also
be included from 19:30 until 23:30. The dinner will start with a Berlin-style Currywurst reception.
Please do not forget your voucher.

The restaurant “Alte Pumpe” is about 30 minutes away from the Math building, either by foot or public
transportation (see next pages for maps and directions). Below is a picture of the street entrance to
“Alte Pumpe”.

Entrance to the Restaurant
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Option 1: Walking from the Math building (2.6km)

The route is shown in the maps below. The directions are as follows:

• Head east on “Straße des 17. Juni” towards the “Tiergarten” park.

• On “Tiergartenufer”, turn right and keep walking for about 1.2km with the “Landwehrkanal” on
your right.

• Exit the park and continue on “Corneliusstraße”.

• Cross the canal, continue through “Lützowufer” to “Lützowstraße”.

• Enter the restaurant through the children playgrounds located at “Lützowstraße” 42.

Use caution - may involve errors or sections not suited for walking

Directions from Straße des 17. Juni 136 to Lützowstraße 42

10623 Berlin

Walk 2.5 km, 31 min

Straße des 17. Juni 136

1. Head east on Str. des 17. Juni/B2/B5 toward Einsteinufer/Müller-Breslau-Straße

2. Turn right onto Einsteinufer/Müller-Breslau-Straße

3. Turn left onto Charlottenburger Brücke/Str. des 17. Juni/B2/B5

 Continue to follow Str. des 17. Juni/B2/B5

4. Turn right onto Tiergartenufer

5. Slight right onto Drakestraße

6. Keep right to stay on Drakestraße

7. Drakestraße turns slightly right and becomes Corneliusstraße

8. Turn right toward Lützowufer

230 m

18 m

120 m

900 m

43 m

230 m

450 m

120 m
Map data ©2015 GeoBasis-DE/BKG (©2009), Google

21/04/15 09:54

Map of walking route to the restaurant where the conference dinner will take place.

These directions are for planning purposes only. You may 7nd that construction
projects, traf7c, weather, or other events may cause conditions to differ from the
map results, and you should plan your route accordingly. You must obey all signs
or notices regarding your route.

Use caution - may involve errors or sections not suited for walking

Directions from Corneliusbrücke (Berlin) to Lützowstraße 42

10785 Berlin

Walk 800 m, 10 min

Corneliusbrücke (Berlin)

1. Head southwest on Stülerstraße toward Corneliusstraße

2. Turn left onto Corneliusstraße

3. Turn right toward Lützowufer

4. Continue onto Lützowufer

5. Turn right onto Lützowpl.

6. Turn left onto Lützowstraße

 Destination will be on the left

Lützowstraße 42

24 m

270 m

120 m

63 m

35 m

280 m

Map data ©2015 GeoBasis-DE/BKG (©2009), Google

23/04/15 10:08

Close-up of “Lützowplatz”.

Map data c©2015 GeoBasis-DE/BGK( c©2009), Google (maps.google.com)



VM60 2015 5

Option 2: Subway & Bus ride from the Math building or Zoologischer Garten station

The route is shown in the maps below. The directions are as follows:

• From the Math building, head west on “Straße des 17. Juni” and go to the subway station
“ Ernst-Reuter-Platz”.

• Take the subway line with direction to “Warschauer Straße” and leave the subway after two
stops at the station “Wittenbergplatz”.

• Take the bus M45 with direction “U Hermannplatz” and get off at the stop “Lützowplatz”.

• Walk to “Lützowstraße” and enter the restaurant through the children playgrounds located at
“Lützowstraße” 42.

If you start from the “Zoologischer Garten” station, take the line with direction to “Warschauer
Straße”, get off at “Wittenbergplatz” and follow the directions above.

9:32 AM–9:57 AM (25 min)

Directions from Straße des 17. Juni 136 to Lützowstraße 42

10623 Berlin
9:32 AM Straße des 17. Juni 136

Walk
About 6 min , 400 m

Use caution - may involve errors or
sections not suited for walking

Head west on Str. des 17.
Juni/B2/B5

At the roundabout, take the 2nd exit
onto Hardenbergstraße

 Destination will be on the left

9:38 AM

9:42 AM

U12
towards S+U Warschauer Str.
(Berlin)
4 min (2 stops)
Service run by Berliner Verkehrsbetriebe - Route information

280 m

130 m

U Ernst-Reuter-Platz (Berlin)

Map data ©2015 GeoBasis-DE/BKG (©2009), Google

23/04/15 09:32

Map of public transport route to the restaurant where the conference dinner will take place.

These directions are for planning purposes only. You may 7nd that construction
projects, traf7c, weather, or other events may cause conditions to differ from the
map results, and you should plan your route accordingly. You must obey all signs
or notices regarding your route.

Use caution - may involve errors or sections not suited for walking

Directions from Lützowplatz (Berlin) to Lützowstraße 42

10785 Berlin

Walk 500 m, 6 min

Lützowplatz (Berlin)

1. Head northeast on Lützowpl. toward Lützowufer

2. Slight right onto Lützowufer

3. Turn right onto Lützowpl.

4. Turn left onto Lützowstraße

 Destination will be on the left

Lützowstraße 42

39 m

130 m

35 m

280 m

Map data ©2015 GeoBasis-DE/BKG (©2009), Google

23/04/15 10:02

Close-up of “Lützowplatz”

Map data c©2015 GeoBasis-DE/BGK( c©2009), Google (maps.google.com)
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Schedule
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Wednesday, May 6

Time Event / Talk Room Abstract
on page

08:00-09:00 Registration
09:00-09:30 Opening MA001

Prof. Dr. Christian Thomsen (President of the TU Berlin)
Prof. Dr. Christof Schütte (Vice-President Zuse Institute

Berlin and Co-Chair DFG Research Center Matheon)
Prof. Dr. Peter Benner (Director Max Planck Institute

for Dynamics of Complex Technical Systems)
INVITED TALKS Session Chair: Jörg Liesen

09:30-10:00 Maria J. Esteban: Symmetry and symmetry breaking for
optimizers of functional inequalities

MA001 18

10:00-11:00 Coffee break
INVITED TALKS Session Chair: Angelika Bunse-Gerstner

11:00-11:30 Shreemayee Bora: Structure preserving perturbations and
distance problems: a decade of work with Volker Mehrmann

MA001 16

11:30-12:00 Heike Faßbender: Complex J-symmetric eigenproblems – more
on structure-preserving algorithms for structured eigenvalue
problems

MA001 19

12:00-12:30 Julio Moro: Structured vs. unstructured spectral perturbation:
a particular overview

MA001 24

12:30-14:00 Lunch
CONTRIBUTED TALKS Session Chair: Heike Faßbender

14:00-14:20 Rafikul Alam: Fiedler-like pencils for rational eigenvalue
problems

MA001 35

14:20-14:40 Jan Heiland: Discrete input/output maps and a generalization
of the proper orthogonal decomposition method

MA001 43

14:40-15:00 Marc Van Barel: Generalization of Lagrange linearization for
polynomial eigenvalue problems

MA001 48

15:00-15:20 Thanos Antoulas: Data-driven model reduction in the Loewner
framework

MA001 36

15:20-15:40 Thomas Berger: On the regularization of linear time-invariant
descriptor systems

MA001 37

15:40-16:30 Coffee break
INVITED TALKS Session Chair: David Watkins

16:30-17:00 Daniel Szyld: Asynchronous optimized Schwarz methods MA001 28
17:00-17:30 Valeria Simoncini: Decay pattern of matrices: application to

matrix functions and matrix equations
MA001 26

CONTRIBUTED TALKS Session Chair: David Watkins
17:30-17:50 Froilán M. Dopico: Volker Mehrmann and modern factoriza-

tions of symplectic matrices
MA001 42

17:50-18:10 Thomas Laffey: Estimating the traces of powers of certain
nonnegative matrices related to orthogonal polynomials

MA001 44

18:30-20:00 Welcome reception Lichthof
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Thursday, May 7

Time Event / Talk Room Abstract
on page

08:00-09:00 Registration
INVITED TALKS Session Chair: Stephen Campbell

09:00-9:30 Caren Tischendorf: Modeling and numerical analysis of PDAEs
describing flow networks

MA001 29

9:30-10:00 Peter Kunkel: On the geometric integration of self-adjoint
linear DAEs

MA001 21

10:00-10:30 Achim Ilchmann: Behaviour of time-varying DAEs MA001 21
10:30-11:00 Coffee break

INVITED TALKS Session Chair: Timo Reis
11:00-11:30 Vu H. Linh: Spectrum-based robust stability analysis of linear

delay differential-algebraic equations
MA001 22

11:30-12:00 Tatjana Stykel: Model reduction of linear and nonlinear
magneto-quasistatic equations

MA001 27

12:00-12:30 Etienne Emmrich: The peridynamic model in nonlocal elasticity
theory

MA001 17

12:30-14:00 Lunch
CONTRIBUTED TALKS Session Chair: Tatjana Stykel

14:00-14:20 Steffen Börm: Hierarchical vectors MA001 38
14:20-14:40 Eugene Tyrtyshnikov: Rank structures in multidimensional

matrices
MA001 48

14:40-15:00 Fernando De Terán: Low rank perturbation of canonical forms MA001 40
15:00-15:20 André Ran: Eigenvalues of rank one perturbations of matrices

with structure in an indefinite inner product space
MA001 46

15:20-15:40 Tobias Damm: Dual pairs of Lyapunov inequalities MA001 39
15:40-16:30 Coffee break

INVITED TALKS Session Chair: Christian Mehl
16:30-17:00 Paul Van Dooren: Structured backward stability of lineariza-

tions of polynomial matrices
MA001 49

POSTER BLITZ AND POSTER SESSION
Session Chair: Christian Mehl

See the next page for the list of posters.
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Poster Abstract
on page

Robert Altmann: Regularization of operator DAEs 51
Manuel Baumann: Nested Krylov methods for shifted linear systems 52
Nieves Castro-González: Perturbation theory of the Moore-Penrose inverse and the

least squares problem
53

Abdullah Cihangir: Ultrametric matrices and the geometric inverse M -matrix
problem

54

Pratibhamoy Das: A posteriori error estimates for a class of differential algebraic
equations in singular perturbation context

55

Jakub Kierzkowski: SOR-like methods for solving the Sylvester equation 56
Antti Koskela: A structure exploiting infinite Arnoldi exponential integrator for linear

inhomogeneous ODEs
57

Sabine Le Borne: H-FAINV: Hierarchically factored approximate inverse precondi-
tioners

58

Carlos Marijuán: On the comparison of sufficient conditions for the real and
symmetric nonnegative inverse eigenvalue problems

59

Giampaolo Mele: The waveguide eigenvalue problem and the tensor infinite Arnoldi
method

60

Hermann Mena: Drugs, herbicides and numerical simulations 61
Helia Niroomand Rad: Modeling of the crosstalk phenomenon for electro-magnetic

systems by bilateral coupling of PDEs and DAEs
61

Vanni Noferini: The sign characteristic of Hermitian matrix functions 62
Constantin Popa: On single projection Kaczmarz extended type algorithms 63
Stefano Pozza: Complex Jacobi matrices and Gauss quadrature for quasi-definite

linear functionals
64

Sarosh Quraishi: Dimensionality reduction for studying physical phenomena: case
study with a brake squeal problem

64

Kersten Schmidt: High-order adaptive sampling of parametric eigenvalue problems
– application to photonic crystal bandstructure calculation

65

Punit Sharma: Structured eigenvalue backward errors of matrix pencils 66
Nikta Shayanfar: Linearization schemes for Hermite matrix polynomials 67
Kirk Soodhalter: Block Krylov subspace methods for shifted systems with different

right-hand sides
68

Zoran Tomljanović: Damping optimization in mechanical systems with external force 69
André Uschmajew: Finding a low-rank basis in a matrix subspace 70
Matthias Voigt: The linear-quadratic optimal control problem revisited 71
Heiko K. Weichelt: Inexact nested Newton-ADI method to solve large-scale algebraic

Riccati equations
72
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Friday, May 8

Time Event / Talk Room Abstract
on page

08:00-09:00 Registration
INVITED TALKS Session Chair: Françoise Tisseur

09:00-09:30 Timo Reis: On ADI approximate balanced truncation MA001 26
09:30-10:00 Agnieszka Miȩdlar: Moving eigenvalues and eigenvectors -

perturbation theory in practice
MA001 24

10:00-10:30 Matthias Bollhöfer: Algorithms for computing functions of
matrix inverses

MA001 15

10:30-11:00 Coffee break
INVITED TALKS Session Chair: Valeria Simoncini

11:00-11:30 David Watkins: Fast and backward stable computation of the
zeros of polynomials

MA001 31

11:30-12:00 Hongguo Xu: Compressing the coefficient matrices of a singu-
lar matrix polynomial

MA001 32

12:00-12:30 D. Steven Mackey: Matrix polynomials in non-standard form MA001 23
12:30-14:00 Lunch

CONTRIBUTED TALKS Session Chair: Daniel Szyld
14:00-14:20 Andrii Dmytryshyn: Orbit closure hierarchies of skew-

symmetric matrix pencils
MA001 41

14:20-14:40 Zdeněk Strakoš: On the Vorobyev method of moments MA001 47
14:40-15:00 Lothar Reichel: A generalized Krylov subspace method for `p-

`q minimization
MA001 47

15:00-15:20 Javier Pérez: On the backward stability of computing polyno-
mial roots via colleague matrices

MA001 45

15:20-16:00 Coffee break
A SPECIAL SESSION DEDICATED TO VOLKER MEHRMANN

Session Chair: Reinhard Nabben
16:00-18:00 Angelika Bunse-Gerstner, Nancy Nichols, Fredi Tröltzsch,

Peter Benner, Christian Mehl
19:30 Conference dinner at restaurant “Alte Pumpe”
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Saturday, May 9

Time Event / Talk Room Abstract
on page

09:00-10:00 Registration
INVITED TALKS Session Chair: Andreas Steinbrecher

10:00-10:30 Martin Grötschel: Numerical linear algebra: a view from an
outsider

MA001 20

10:30-11:00 Stephen Campbell: Some advantages of a DAE formulation MA001 17
11:00-11:30 Coffee break

INVITED TALKS Session Chair: Peter Benner
11:30-12:00 Federico Poloni: Cyclic reduction and index reduction/shifting

for a second-order probabilistic problem
MA001 25

12:00-12:30 Shmuel Friedland: Low rank approximation of tensors MA001 20
12:30-13:00 Françoise Tisseur: Max-Balancing Hungarian Scalings MA001 29
13:00-13:30 Closing MA001
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Abstracts of invited talks
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Matthias Bollhöfer m.bollhoefer@tu-bs.de

Algorithms for computing functions of matrix inverses
M. Bollhöfer1

1TU Braunschweig, Institute for Computational Mathematics, m.bollhoefer@tu-bs.de

Functions of entries of inverses of matrices like all diagonal entries of a sparse matrix inverse or its trace
arise in several important computational applications such as density functional theory [2], covariance
matrix analysis in uncertainty quantification [1], vehicle acoustics optimization [6], or when evaluating
Green’s functions in computational nanolelectronics [4]. We will review some methods for (approx-
imately) computing selective parts of the matrix inverse such as stochastic estimators [1], domain
decomposition-based methods [7, 5] or direct methods [3]. We will further present a new algorithm
for approximate selective matrix inversion that uses an approximate version of the method presented
in [3]. Its overall performance will be demonstrated for selected numerical examples, in particular for
symmetric and indefinite application problems which frequently arise from practical applications.

References

[1] C. Bekas, A. Curioni, and I. Fedulova. Low-cost high performance uncertainty quantification.
Concurrency and Computation: Practice and Experience, 2011.

[2] W. Kohn, L. Sham, et al. Self-consistent equations including exchange and correlation effects.
Phys. Rev, 140(4A):A1133–A1138, 1965.

[3] L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and W. E. SelInv – an algorithm for selected inversion
of a sparse symmetric matrix. ACM Transactions on Mathematical Software, 37(4):40:1–40:19,
2011.

[4] M. Luisier, T. Boykin, G. Klimeck, and W. Fichtner. Atomistic nanoelectronic device engineering
with sustained performances up to 1.44 pflop/s. In High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, pages 1–11. IEEE, 2011.

[5] V. Mehrmann. Divide & conquer methods for block tridiagonal systems. Parallel Comput., 19:257–
279, 1993.

[6] V. Mehrmann and C. Schröder. Nonlinear eigenvalue and frequency response problems in industrial
practice. J. Math. in Industry, 1:7, 2011.

[7] J. M. Tang and Y. Saad. Domain-decomposition-type methods for computing the diagonal of a
matrix inverse. SIAM J. Sci. Comput., 33(5):2823–2847, 2011.
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Shreemayee Bora shbora@iitg.ernet.in

Structure preserving perturbations and distance problems: a
decade of work with Volker Mehrmann

S. Bora1

1Department of Mathematics, Indian Institute of Technology Guwahati, India, shbora@iitg.ernet.in

Much of Volker Mehrmann’s work in control theory and mathematical modelling is associated with
solutions of challenging eigenvalue problems. Very often, the challenge is the result of the fact that
the matrices involved in the problems have some special structure resulting in eigenvalues that are
symmetrically placed with respect to some subset in the complex plane. Eigenvalues belonging to these
subsets are called critical eigenvalues as they do not conform to the existing eigenvalue symmetry and
their movements are restricted by some additional attributes called sign characteristics. Existence of
critical eigenvalues can pose significant computational challenges and undesirable physical phenomena
like loss of passivation [1]. Volker Mehrmann is among the early researchers to acknowledge the
importance of analysing the effect of structure preserving perturbations on such eigenvalue problems
and their role in the solutions of certain ‘distance problems’ that often arise in applications.
This talk will present some of the challenging distance problems that were tackled in [1] and [2] from
the point of view of structure preserving perturbation analysis. Similar analysis has been used to solve
other classes distance problems in [3] and [4]. A brief overview of these will also be given.

References

[1] R. Alam, S. Bora, M. Karow, V. Mehrmann and J. Moro, Perturbation theory for Hamiltonian
matrices and the distance to bounded realness, SIAM J. Matrix Anal. Appl., 32(2011), pp. 484-
514.

[2] S. Bora and V. Mehrmann, Linear perturbation theory for structured matrix pencils arising in
control theory, SIAM J. Matrix Anal. Appl., 28(2006), pp. 148-191.

[3] R. Srivastava, Distance problems for Hermitian matrix pencils and polynomials - an ε pseudospectra
based approach. PhD Thesis, Department of Mathematics, IIT Guwahati, India, December 2012.

[4] S. Bora and R. Srivastava, Distance problems for Hermitian matrix pencils with eigenvalues of
definite type, 2014. Submitted to SIAM J. Matrix Anal. Appl.
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Stephen Campbell slc@ncsu.edu

Some advantages of a DAE formulation
S. Campbell1

1North Carolina State University, slc@ncsu.edu

It is well known that one advantage of a DAE formulation is that it is often the natural way that
many physical systems are formulated and thus DAEs permit easier modeling of a variety of complex
processes. However DAE formulations and approaches are sometimes better even for problems with
ordinary differential equation models. In this talk we will give several examples drawn from the work
of the author and several other researchers. The examples are chosen both to provide a variety of
applications as well as a variety of different advantages.
Some examples will be from control theory and in particular observer design. We will not discuss the
design of observers for DAEs, this is done elsewhere. Rather, we will present two different examples
where the flexibility of a DAE formulation when designing observers can be exploited. One is in getting
linear error dynamics. The other is in estimating disturbances. A second set of example deals with the
numerical solution of optimal control problems with and without delays.
For each example a basic introduction to the problem will be provided so that the talk will hopefully
be accessible to a wide audience.

Etienne Emmrich emmrich@math.tu-berlin.de

The peridynamic model in nonlocal elasticity theory
E. Emmrich1 and D. Puhst2

1TU Berlin, emmrich@math.tu-berlin.de
2TU Berlin, puhst@math.tu-berlin.de

Peridynamics is a nonlocal continuum theory which avoids any spatial derivative. It is believed to be
suited for the description of fracture and other material failure, and to model multiscale problems. In
this talk, we introduce the peridynamic model and discuss several aspects of its mathematical analysis.
We review recent results on the existence of solutions to the peridynamic equation of motion for a large
class of nonlinear pairwise force functions modeling isotropic microelastic material (see [1, 2]). Our
method of proof applies also to other nonlocal evolution equations.

References

[1] E. Emmrich and D. Puhst, Measure-valued and weak solutions to the nonlinear peridynamic model
in nonlocal elastodynamics. Nonlinearity 28 (2015) 1, pp. 285–307.

[2] E. Emmrich and D. Puhst, Well-posedness of the peridynamic model with Lipschitz continuous
pairwise force function. Commun. Math. Sci. 11 (2013) 4, pp. 1039–1049.
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Maria J. Esteban esteban@ceremade.dauphine.fr

Symmetry and symmetry breaking for optimizers of functional
inequalities

M. J. Esteban1

1CEREMADE. CNRS & Université Paris-Dauphine, esteban@ceremade.dauphine.fr

In this talk will be presented a series of results about the symmetry properties of optimizers of func-
tional inequalities which are invariant under a certain symmetry group. The symmetry issue is of big
importance in many of the applications of those inequalities, and also in the study of many physical
systems for which knowing when the symmetry is broken is of the utmost importance. Also, when
numerical simulations have to be made, the knowledge of the symmetry class where to compute can
enormously reduce the computational effort.

The results which will be presented during this talk are mainly theoretical, but the results of numerical
computations that have been instrumental in building conjectures all along this project will also be
shown.

Some of the works presented here have been obtained with one or several of the following collaborators:
J. Dolbeault, M. Loss, G. Tarantello and A. Tertikas.
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Heike Faßbender h.fassbender@tu-braunschweig.de

Complex J-symmetric eigenproblems – more on
structure-preserving algorithms for structured eigenvalue

problems
P. Benner1, H. Faßbender2, and C. Yang3

1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, benner@mpi-magdeburg.mpg.de
2TU Braunschweig, Institut Computational Mathematics, Braunschweig, h.fassbender@tu-braunschweig.de
3Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, USA, cyang@lbl.gov

The eigenproblem HCx = λx for matrices

HC =

[
A C
D −AT

]
∈ C2n×2n, A,C = CT , D = DT ∈ Cn×n.

will be considered. Please note, that here XT denotes transposition, Y = XT , yij = xji, no matter
whether X is real or complex, while XH denotes conjugate transposition, Y = XH , yij = xji.
For

Jn =

[
0 In
−In 0

]
∈ R2n×2n, In ∈ Rn×n

we have
(HCJ)T = HCJ.

Matrices HC are called complex-J-symmetric. The eigenvalues of HC display a symmetry: they appear
in pairs (λ,−λ). If x is the right eigenvector corresponding to λ, HCx = λx, than Jx is the left
eigenvector corresponding to the eigenvalue −λ of HC , (Jx)THC = −λ(Jx).
Any complex J-symmetric matrix X is said to be in structured Schur form if

X =

[
R B
0 −RT

]
, R,B = BT ∈ Cn×n,

where the nonzero eigenvalues of R either have positive real part or zero real part and positive imaginary
part. For any complex J-symmetric matrix HC there exists a complex symplectic and unitary matrix
W ∈ C2n×2n

WTJW = J WHW = I,

such that WHHCW is in structured Schur form.
The most popular way to compute the standard Schur form of a general matrix is the QR algorithm.
It is tempting to derive a structured QR algorithm for transforming HC iteratively into structured
Schur form. We will discuss why this is not possible in general and suggest other methods to compute
eigenvalues and eigenvectors of HC . In particular, a straightforward adaption of the algorithm for
computing the real SR decomposition as given in [1] gives an algorithm for computing the complex
symplectic SR decomposition of an arbitrary matrix A ∈ C2n×2n. Adapting this complex SR algorithm
for complex J-symmetric HC only O(n) flops per SR step are needed compared to O(n3) flops when
working on a general complex matrix.
Throughout this talk connections to Volker’s work on Hamiltonian eigenvalue problems will be high-
lighted.
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In many applications such as data compression, imaging or genomic data analysis, it is important to
approximate a given tensor by a tensor that is sparsely representable. For matrices, i.e. 2-tensors,
such a representation can be obtained via the singular value decomposition, which allows to compute
best rank k-approximations. For very big matrices a low rank approximation using SVD is not com-
putationally feasible. In this case different approximations are available. It seems that variants of the
CUR-decomposition are most suitable.
For d-mode tensors T ∈ ⊗di=1Rni , with d > 2, many generalizations of the singular value decomposition
have been proposed to obtain low tensor rank decompositions. The most appropriate approximation
seems to be best (r1, . . . , rd)-approximation, which maximizes the `2 norm of the projection of T
on ⊗di=1Ui, where Ui is an ri-dimensional subspace Rni . One of the most common methods is the
alternating maximization method (AMM). It is obtained by maximizing on one subspace Ui, while
keeping all other fixed, and alternating the procedure repeatedly for i = 1, . . . , d. Usually, AMM
will converge to a local best approximation. This approximation is a fixed point of a corresponding
map on Grassmannians. We suggest a Newton method for finding the corresponding fixed point. We
also discuss variants of CUR-approximation method for tensors. We compare numerically different
approximation methods.
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The definition that numerical linear algebra is the investigation of algorithms for performing linear
algebra computations, in particular matrix operations, on computers is an obvious observation. When
I started my mathematical career (about 40 years ago), I was not aware that numerical linear algebra
is also a (lively) mathematical research field. I have learned this meanwhile – to a large extent through
my contacts with Volker Mehrmann and his research environment. The VM60 Festival seems to be a
good opportunity to survey some of my experiences and encounters with numerical linear algebra, and
in particular, to sketch the type of numerical linear algebra that is important for my own work.
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We consider the behaviour of time-varying DAEs

kerSR( d
dt ) :=

{
w ∈ S

∣∣∣ w is a weak solution of R( d
dt )w = 0

}
.

where
R(s) = R0(·) +R1(·)s+ . . .+RN (·)sN ∈ Cg×q[s]

and
S ⊂ L1

loc(I;Rq) denotes a vector space, I ⊂ R an interval, C a function space.

We will in particular study finite escape time, input-output systems, controllability, observability, and
zero dynamics. The seminar is based on [1, 2, 3, 4]

References

[1] Achim Ilchmann, Ines Nürnberger, and Wiland Schmale, Time-varying polynomial matrix systems,
Int. J. Control 40(2), 329–362, 1984

[2] Achim Ilchmann and Volker Mehrmann, A behavioural approach to time-varying linear systems,
Part 1: General theory, SIAM J. Control Optim. 44(5), 1725–1747, 2005

[3] Achim Ilchmann and Volker Mehrmann, A behavioural approach to time-varying linear systems,
Part 2: Descriptor systems, SIAM J. Control Optim. 44(5), 1748–1765, 2005

[4] Thomas Berger, Achim Ilchmann, and Fabian Wirth, Zero dynamics and stabilization for analytic
linear systems, Acta Applicandae Mathematicae 131(1), 2014

Peter Kunkel kunkel@math.uni-leipzig.de

On the geometric integration of self-adjoint linear DAEs
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Self-adjoint linear DAEs arise, e. g., in the necessary conditions for linear-quadratic optimal control
problems with constraining linear DAEs or by linearization of DAEs from the modelling of multibody
systems. Starting from local and global canonical forms for such structured problems, we show that
under a suitable restricted class of transformations we are able to separate a hamiltonian system of
differential equations. In this sense, we may say that a self-adjoint linear DAE exhibits a symplectic
flow. Based on these observations, we will discuss a possibilty for the geometric integration of self-
adjoint linear DAEs. Techniques include structured index reduction, time-dependent transformations
and automatic differentiation.
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In this talk we discuss recent results on the robust stability analysis of linear delay ordinary differential
equations (DODEs) and linear delay differential-algebraic equations (DDAEs). We investigate whether
the asymptotic/exponential stability of a given system is preserved when the system coefficients are
subject to structured perturbations. In particular, we are interested in computing the distance (measured
in an appropriate metric) between the nominal stable system and the closest perturbed systems that
loses the stability. This quantity is called the distance to instability or the stability radius of the system.
We focus on the spectrum-based stability criteria and the formulation of stability radii for linear delay
systems. The stability and robust stability analysis for DAEs is quite different from that of ODEs since
the system dynamics is constrained, see [1]. Not only the stability, but also some other DAE properties
must be considered. If the time-delay is involved, then the existence and the behaviour of solutions
become more complicated, see [2]. In the first part of the talk, we briefly overview important results
on the stability radii for linear time-invariant DODEs and an extended result for linear time-varying
DODEs. In the second part, we discuss some recent results on the spectrum-based stability and robust
stability analysis for general linear time-invariant DDAEs [2]. We close the talk by mentioning some
further related results and topics for future research.
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Matrix polynomials P (λ) and their associated eigenproblems are fundamental for a variety of appli-
cations. Certainly the standard (and apparently most natural) way to express such a polynomial has
been

P (λ) = λkAk + λk−1Ak−1 + · · ·+ λA1 +A0 ,

where Ai ∈ Fm×n. However, it is becoming increasingly important to be able to work directly and
effectively with polynomials in the non-standard form

Q(λ) = φk(λ)Ak + φk−1(λ)Ak−1 + · · ·+ φ1(λ)A1 + φ0(λ)A0 ,

where {φi(λ)}ki=0 is some other basis for the space of all scalar polynomials of degree at most k. This
talk will describe some new approaches to the systematic construction of families of linearizations for
matrix polynomials like Q(λ), with emphasis on the classical bases associated with the names Newton,
Hermite, Bernstein, and Lagrange.
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In the context of iterative solvers moving the eigenvalue or the eigenpair may be of particular importance
in several cases, e.g., deflation techniques, increasing the spectral gap or determining the set of linearly
independent eigenvectors. It can also be used for reducing the imaginary parts of the eigenvalues
without chainging the matrix exponential; this can enhance the computation of exp(A). Exploiting the
classical perturbation analysis for eigenvalue problems [2] we study the following problem.
Given a matrix A ∈ Cn×n, a simple eigenvalue λ and corresponding right and left eigenvector, x and
y, such that

Ax = λx and yTA = λyT , (1)

our goal is to obtain a perturbation ∆A which allows moving the eigenvalue λ or/and the associated
eigenvector x such that the other eigenvalues, as well as all right and left eigenvectors, will stay unaf-
fected by the perturbation. Similar analysis is carried out for the generalized and quadratic eigenvalue
problems [1].
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The design and analysis of structure-preserving algorithms to solve structured eigenproblems has led in
the last decades to a steady interest in structured eigenvalue perturbation theory, i.e. in determining
the behavior of eigenvalues and other spectral objects (e.g., invariant subspaces, sign characteristics,...)
when a matrix or operator is subject to perturbations belonging to the same class of operators as the
unperturbed one. It is well known that this behavior may be quite different from the behavior under
arbitrary, nonstructured perturbations.

In this talk I attempt to give an overview of several results obtained in the last few years which show the
peculiarities of structured vs. unstructured perturbations in a number of different contexts, e.g. spectral
conditioning, low-rank perturbations or, if time allows, multiplicative ones. Several of these results are
either due to Volker and co-authors, or have been motivated by his work on Control problems.
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I wish to describe a problem that has many similarities with the differential-algebraic and boundary-
value problems that appear in mechanics and control theory, although it has a different application
background and different involved matrix structures.
Markov-modulated Brownian motion is a probabilistic process used in modelling a variety of real-life
phenomena. The model consists in a real-valued stochastic process which evolves under a Brownian
motion law whose parameters depend on the state of an underlying (environment) continuous-time
Markov chain with n states. Its stationary distribution can be represented as a vector-valued function
f : [0,∞] 7→ Rn≥0 which satisfies the constant-valued differential-algebraic equation

f̈(x)V − ḟ(x)D + f(x)Q = 0, (2)

where Q ∈ Rn×n is the generator matrix of a continuous-time Markov chain (a singular −M -matrix),
while V ∈ Rn×n≥0 and D ∈ Rn×n (with mixed signs) are diagonal. Boundary conditions are at 0 and ∞
(or 0 and M > 0, in some problems). A classical approach to solving (2) is identifying the invariant
subspace associated to the stable eigenvalues o the matrix polynomial V λ2 −Dλ+Q. For instance, a
normwise stable approach based on linearization + generalized Schur form exists in literature [1].
We describe an approach based on Cyclic Reduction, a famous matrix iteration, to solve this problem
in a componentwise accurate way, relying on the sign properties of the involved matrices and using
a special subtraction-free variant of Gaussian elimination, the GTH method. This work extends our
previous research [2] on first-order problems (those with V = 0, known as fluid queues). Some novel
features appear for second-order problems:

• Switching to a more general formulation with invariant pairs (instead of a matrix equation) is
necessary to ensure the correct signs for subtraction-free methods.

• There is less freedom in the choice of the eigenvalue transformation map, an intermediate step
that has some points in common with discretization methods for the solution of ODEs.

• In the cases in which V has zero diagonal entries, postmultiplication by a matrix pencil is used
to modify the position of the infinite eigenvalues. This transformation can be interpreted as
index reduction via differentiation of some equations; in addition to adjusting the eigenvalue
positions, it plays an important role in getting the correct signs to ensure the applicability of the
componentwise-accurate methods.
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Balanced truncation is one of the most popular model reduction methods for input-output-systems gov-
erned by ordinary differential equations. This technique relies on the determination of the observability
and controllability Gramian matrices and provides an error bound in the H∞ norm. For this method,
a variety of efficient numerical methods have been developed in the past couple of years. In particular,
the ADI iteration for determining the Gramians has become very popular since it allows to determine
balanced realizations of large-scale systems.
Since ADI iteration provides approximative solutions, it is natural to wonder the effect of this approx-
imation in the overall model reduction process. This is subject the talk, where we aim to present a
backward error analysis: We first show that ADI approximate balanced truncation in theory consists of
exact balanced truncation of a certain artificial system, which is obtained from the original system via
an L2-orthogonal projection of the impulse response. Numerical consequences will be presented.

Valeria Simoncini valeria.simoncini@unibo.it

Decay pattern of matrices: application to matrix functions and
matrix equations

V. Simoncini1

1Università di Bologna, valeria.simoncini@unibo.it

Sparsity and structural properties of matrices have a key role in the development of many efficient and
stable algorithms. The entry decay pattern of matrices is also emerging as a helpful piece of information
for analyzing and approximating complex problems. Indeed, a possibly exponential decay pattern away
from the main diagonal can be observed and described for functions of matrices with particular structure.
In this talk we review some available bounds, and also show new decay estimates for the entries of a
wide class of matrix functions. We then tailor these bounds to matrices with Kronecker structure, as
they arise in many application problems associated with partial differential equations. We also report
on the use of these patterns in the numerical solution of linear matrix equations.
Partly joint work with Michele Benzi, Emory University (USA)
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The dynamic behaviour of electromagnetic devices can be described by Maxwell’s equations coupled
with circuit equations. In magneto-quasistatic problems, the contribution of the displacement currents
is negligible compared to the conductive currents. A finite element discretization of Maxwell’s equations
in magnetic vector potential formulation combined with the circuit coupling equations yields a large
system of differential-algebraic equations of special structure. For model order reduction of linear
systems, we employ a balanced truncation approach, whereas nonlinear systems are reduced using
a proper orthogonal decomposition method combined with a discrete empirical interpolation technique.
We will exploit the special structure of the underlying problem to improve the performance of the model
reduction algorithms.
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Asynchronous methods refer to parallel iterative procedures where each process performs its task without
waiting for other processes to be completed, i.e., with whatever information it has locally available and
with no synchronizations with other processes. Mathematical models of this computational paradigm
were developed in the 1980s and 90s and convergence proofs given; see, e.g., the survey [1] and
references therein.
Schwarz iterative methods were originally devised to show existence of solutions of elliptic problems on
irregular domains and were revived as numerical methods in the 1980s; see, e.g., [4], and the many
references therein. For these Schwarz methods, one may consider the solution of a general problem of
the form {

L(u) = f in Ω

C(u) = g on ∂Ω,
(3)

where L and C a partial differential operators defined on the domain Ω and its boundary, respectively.
This domain is (artificially) split into two or more (possibly overlapping) subdomains, i.e., we have
Ω = ∪i=1,...,pΩi. In essence one is introducing new artificial boundary conditions on the interfaces
between these subdomains. In the classical formulation, these artificial boundary conditions are of
Dirichlet type. Given an initial approximation u(0), the method progresses by solving for u(n + 1)
the equation (3) restricted to each subdomain Ωi using as boundary data on δΩi \ δΩ the values for
u(n). This procedure is inherently parallel, since the (approximate) solutions on each subdomain can
be performed by a different processor.
Convergence of these iterations can be guaranteed under mild conditions, but it is in general rather
slow, comparable to the Block Jacobi or Block Gauss-Seidel methods for linear algebraic systems. Much
faster convergence can be achieved by using Robin and mixed boundary conditions on the interfaces.
In this way one can optimize the Robin parameter(s) and obtain a very fast method. This technique
has been termed optimized Schwarz methods; see, e.g., [2]. See also [3] for an algebraic version of this
approach.
In this talk, an asynchronous version of the optimized Schwarz method is presented for the solution of
differential equations of the form (3) on a parallel computational environment. In a one-way subdivision
of the computational domain, with overlap, the method is shown to converge when the optimal artificial
interface conditions are used. Convergence is also proved under very mild conditions on the size of the
subdomains, when approximate (non-optimal) interface conditions are utilized. Numerical results are
presented on large three-dimensional problems illustrating the efficiency of the proposed asynchronous
parallel implementation of the method.
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The simulation of flow networks as electric circuits, water and gas supplying networks leads to partial
differential algebraic equation systems (PDAEs). Depending on the flow medium and the model level,
the systems contain partial differential equations of elliptic/parabolic/hyperbolic type and/or ordinary
differential equations [1, 2, 3, 4]. They are coupled by linear constraints arising from the network
topology.
We present some common structures of the resulting PDAE systems. Additionally, we demonstrate
that the stability of numerical schemes is highly influenced by the constraints and present some suitable
discretizations for certain prototype PDAEs. The presentation bases on joint work with C. Huck,
L. Jansen, R. Lamour, R. März and M. Matthes.
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A Hungarian scaling is a two-sided diagonal scaling of a matrix, which can be applied along with a
permutation P to a linear system Ax = b with A ∈ Cn×n and b ∈ Cn yielding

H = PD1AD2, Hy = PD1b, x = D2y,

where D1, D2 ∈ Rn×n are diagonal and nonsingular. The scaled and reordered matrix H = (hij) is
such that |hij | ≤ 1 and |hii| = 1 for i, j = 1, . . . , n, and tends to be more diagonally dominant than
the original matrix. Hungarian scaling improves the stability of LU factorization of sparse matrices and
reduces the need for pivoting [2], [3]. It is an effective preprocessing step before applying preconditioned
iterative methods [1].
We use max-plus algebra to characterize the set of all Hungarian scalings for a given matrix and show
that max-balancing a Hungarian scaled matrix yields the most diagonally dominant Hungarian scaled
matrix possible. We also propose an approximate max-balancing Hungarian scaling whose computation
is embarrassingly parallel.
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We present a fast and backward stable method for computing eigenvalues of upper Hessenberg unitary-
plus-rank-one matrices, that is, matrices of the form A = Ũ + x̃ỹT , where Ũ is unitary, and A is upper
Hessenberg. This includes the class of Frobenius companion matrices, so this method can be used to
find the zeros of a polynomial.
The unitary-plus-rank-one structure is preserved by any method that performs unitary similarity trans-
formations, including Francis’s implicitly-shifted QR algorithm. We present a new implementation of
Francis’s algorithm that acts on a data structure that stores the matrix in O(n) space and performs
each iteration in O(n) time. The method is backward stable.
We store A in the form A = QR, where Q is unitary and R is upper triangular. In this sense our
method is similar to one proposed by Chandrasekaran et. al. [1], but our method stores R differently.
Since Q is a unitary upper-Hessenberg matrix, it can be stored as a product Q = Q1Q2 · · ·Qn−1, where
each Qj is a Givens-like unitary tranformation that acts only on rows j and j + 1. We call these Qj
core transformations. Both our algorithm and that of Chandrasekaran et. al. use this representation of
Q. For R, they use a quasiseparable generator representation. Our representation scheme factors R in
the form

R = Cn−1 · · ·C1(B1 · · ·Bn−1 + e1y
T ),

where the Cj and Bj are unitary core transformations. This is possible because R is also unitary-plus-
rank-one.
The Hessenberg matrix A takes the form

A = QR = Q1 · · ·Qn−1Cn−1 · · ·C1(B1 · · ·Bn−1 + e1y
T ),

and thus is represented by about 3n core transformations plus the rank-one part. In fact there is some
redundancy in the representation. The information about the rank-one part is also encoded in the
core transformations, so it is not necessary to store the rank-one part explicitly. Performing a Francis
iteration on a matrix stored in this form is entirely a matter of manipulating core transformations. We
will show how to do this.
Our method is about as accurate as and much faster than the (slow) Francis algorithm applied to the
companion matrix without exploiting the structure. It is faster than other fast and (allegedly) backward
stable methods that have been proposed, and it has comparable or better accuracy.
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Following the idea in [1], we present a compressing procedure for singular matrix polynomials of the
form

P (λ) =

k∑
j=0

λjAj = λkAk + λk−1Ak−1 + . . .+ λA1 +A0.

where A0, . . . , Ak ∈ Cm×n. The procedure applies a sequence of k − 1 unitary transformations simul-
taneously on the coefficient matrices to form a matrix polynomial

P̃ (λ) = U∗P (λ)V =: λkÃk + . . .+ λÃ1 + Ã0,

where U, V are unitary and all the coefficient matrices are in block forms Ãj = [A
(j)
pq ]k×k. A so-called

trimmed linearization λÑ+M̃ can be formed with the blocks from the transformed coefficient matrices,
where

Ñ =



Ã1 A
(2)
1:k,1:k−1 A

(3)
1:k,1:k−2 . . . A

(k−1)
1:k,1:2 A

(k)
1:k,1:1

A
(2)
1:k−1,1:k A

(3)
1:k−1,1:k−1 A

(4)
1:k−1,1:k−2 . . . A

(k)
1:k−1,1:2

A
(3)
1:k−2,1:k A

(4)
1:k−2,1:k−1 . . .

. . .

...
... . . .

A
(k−1)
1:2,1:k A

(k)
1:2,1:k−1

A
(k)
1:1,1:k



M̃ =



Ã0

−A(2)
1:k−1,1:k−1 −A(3)

1:k−1,1:k−2 . . . −A(k−1)
1:k−1,1:2 −A(k)

1:k−1,1:1
−A(3)

1:k−2,1:k−1 −A(4)
1:k−2,1:k−2 . . . −A(k)

1:k−2,1:2
...

... . . .

−A(k−1)
1:2,1:k−1 −A(k)

1:2,1:k−2
−A(k)

1:1,1:k−1


,

and A
(j)
1:p,1:q is the submatrix of Ãj on the leading p block rows and q block columns. This trimmed

linearization preserves all the eigenstructure information of the original matrix polynomial, except the
leading k−1 Jordan chains of the eigenvalue infinity are deflated. In contrast, conventional linearizations
may increase the length of singular chains [2, 3].
The compressing procedure can be simply applied to structured matrix polynomials for constructing
structured trimmed linearizations.
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Rational eigenvalue problems arise in many applications such as in acoustic emissions of high speed
trains, calculations of quantum dots, free vibration of plates with elastically attached masses, vibrations
of fluid-solid structures and in control theory. Therefore, computation of eigenvalues and eigenvectors
of a rational matrix function is an important task which requires development of efficient numerical
methods [1]. An obvious direct method to solve a rational eigenvalue problem (REP) is to transform
the REP to a polynomial eigenvalue problem (PEP) by clearing out the denominators in the rational
matrix function followed by linearization of the resulting PEP to obtain a generalized eigenvalue problem
(GEP). Schematically,

REP −→ PEP −→ GEP.

A downside of this brute-force “polynomialization” of an REP is that the transformation from REP
to PEP may introduce spurious eigenvalues, which may be difficult to detect and remove. Moreover,
the transformation from REP to PEP followed by linearization may result in a GEP of very large
dimension especially when the rational matrix function has a large number of poles. On the other hand,
nonlinrear eigensolvers such as Newton method and nonlinear Rayleigh-Ritz methods (e.g., nonlinear
Arnoldi, rational Krylov, Jacobi-Davidson) may be suitable when a few eigenpairs are desired but their
convergence analysis is a challenging task. A third alternative is to “linearize” an REP in an appropriate
sense that avoids polynomialization of REP and provides a GEP of least dimension.

We propose “linearization” of a rational matrix function which extends linearization of a matrix poly-
nomial to the case of a rational matrix function. We also introduce Fiedler-like matrix pencils for a
rational matrix function and show that the Fiedler-like pencils are in fact linearizations of the rational
matrix function. Further, we show that a Fiedler-like pencil Lσ(λ) of a rational matrix function G(λ)
associated with a permutation σ allows an easy recovery of eigenvectors of G(λ) from those of Lσ(λ).
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Data-driven model reduction in the Loewner framework
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Interpolatory model reduction methods have matured quickly in the last decade and have been adopted
by an ever-growing number of researchers. They have emerged as one of the leading choices for truly
large scale problems. These methods have their roots in numerical analysis and linear algebra and are
related to rational interpolation and Pade approximation. In the case of linear dynamical systems, the
main idea behind these methods is to generate a reduced-model whose transfer function interpolates
that of the original system at select interpolation points. Recently, major advances showed how to
apply interpolation methods to nonlinear systems. The resulting approach turns out to global, in other
words no small inputs are required.

In this talk we will give an overview of recent advances in model reduction of linear and nonlinear
dynamical systems by means of interpolatory methods and in particular the Loewner framework. Several
examples illustrating the theory will also be presented.
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For linear time-invariant descriptor systems we consider the question whether there exists a feedback
which renders the closed-loop system regular. This property can be equivalently characterized by
simple algebraic and geometric conditions in terms of the involved matrices and the augmented Wong
sequences. We also consider the slightly more general problem of existence of a feedback such that an
autonomous closed-loop system is obtained. The corresponding feedback matrices can be constructively
obtained using a feedback canonical form [2].
For systems which are not regularizable by feedback, an additional behavioral equivalence transforma-
tion and a reorganization of input and state variables leads to a regular system, the index of which is at
most one. This procedure is known [1], however we present a new approach which allows for a detailed
characterization of the resulting regular system. We show that this system is fully determined by the
augmented Wong sequences, which in particular allows for a simple calculation of the number of redun-
dant equations, free state variables and constraint input variables independent of the transformation of
the system.
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Hierarchical vectors
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Adaptive mesh refinement is an important technique for handling equations that lead to solutions with
localized features like shocks or singularities. Typically the construction of an adaptive mesh is based
on an analysis of the underlying differential operators, e.g., residual error estimators typically rely on
the coercivity of the corresponding bilinear form.
This talk presents an algebraic approach to mesh refinement: if the matrix describing the problem is
rank-structured, e.g., if it is an H2-matrix, we can construct a hierarchical system of basis vectors that
can be used to represent the solution. Choosing basis vectors from different levels of this hierarchy
leads to an algebraic counterpart of a refined mesh.
If a vector can be represented by m hierarchical basis vectors, it is possible to compute the matrix-vector
multiplication in O(m) operations, but the result is represented in a matrix-dependent intermediate
basis. We can use orthogonal projections to translate the result back to the original basis, and it is
even possible to compute the corresponding projection error explicitly. This allows us to locally refine
or coarsen the basis representation and leads to a purely algebraic refinement strategy.
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In his inspiring paper [1], Positive Operators and an Inertia Theorem, Hans Schneider pointed out
a close relationship between inertia theorems for Lyapunov equations and positive operators on the
space of Hermitian matrices as well as the theory of M -matrices. Among other things, he showed
that Lyapunov’s matrix theorem can be extended to the case where a positive operator is added to the
Lyapunov operator. This result turned out to be fundamental e.g. for the analysis of linear stochastic
systems, see [2]. In typical applications it is interpreted as a criterion for a system to be asymptotically
stable.
There is another famous result involving the Lyapunov operator (see e.g. [3, 4]), which plays an im-
portant role in model order reduction. For a system ẋ = Ax with associated Lyapunov operator
LA : X 7→ AX +XA∗, it can be stated in the following equivalent forms, where

Σ = diag (Σ1,Σ2) > 0 with σ(Σ1) ∩ σ(Σ2) = ∅

is some block-diagonal matrix.

(a) If LA(Σ) ≤ 0 and L∗A(Σ) ≤ 0, then the projected subsystems corresponding to the blocks Σi are
asymptotically stable.

(b) If LA(Σ) ≤ 0 and LA(Σ−1) ≤ 0, then the projected subsystems corresponding to the blocks Σi
are asymptotically stable.

It is immediate to formulate analogous generalized statements for the case, where a positive operator
Π is added to the Lyapunov operator, that is for operators LA + Π as considered in [1]. However,
the generalizations of (a) and (b) are no longer equivalent and the proofs are less immediate than the
statements. Some of the results appeared recently in [5].
In this talk we discuss applications to model order reduction and show the relation of our results to the
theory of positive and cross-positive mappings (e.g. [6, 7, 8]). There are multiple connections to topics
treated by Volker in his work.
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Low rank modifications of a physical system that depends on many parameters arise when only a few
parameters are modified, regardless of their magnitude (in the sense of norm). When the physical
system is modeled by a system of linear differential (or differential-algebraic) equations of degree d:

Adx
(d) + · · ·+A1x

′ +A0x = f, A0, A1, . . . , An ∈ Cm×n, (4)

then this kind of modifications result in low rank perturbations of the associated matrix polynomial
A0 + λA1 + · · ·+ λdAd.
It is of particular interest the case of linear differential-algebraic equations of degree 1:

Bx′ +Ax = f, A,B ∈ Cm×n,

where the associated polynomial is a pencil, A+ λB.
The behavior of the solution of the equation (4) can be described using the canonical form of the
matrix polynomial (the Smith form for general polynomials, and the Kronecker canonical form (KCF)
for pencils, which, for regular pencils, is also known as the Weierstrass canonical form (WCF)). Hence,
the study of how this canonical form changes after low rank perturbations is interesting, not only as a
theoretical problem, but also in a practical setting.
In this talk, we will review know results that describe the change of the following canonical forms under
low rank perturbations:

• The Jordan canonical form of a matrix [4, 5].

• The WCF of a regular pencil [3].

• The KCF of a singular pencil without full rank [1].

• The Smith form of a regular matrix polynomial [2].

We will also relate some of these results with recent work by Volker and collaborators that deal with
structured matrices (like selfadjoint, symplectic, orthogonal, or unitary).

This talk is mainly based on joint work with F. M. Dopico and J. Moro.
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We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form
under congruence. This problem is also known as the stratification problem of skew-symmetric matrix
pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit
(or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another
skew-symmetric matrix pencil. The developed theory relies on our main theorem stating that a skew-
symmetric matrix pencil A−λB can be approximated by pencils strictly equivalent to a skew-symmetric
matrix pencil C − λD if and only if A − λB can be approximated by pencils congruent to C − λD.
The stratification theory is also illustrated by using StratiGraph.
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Theory and structured algorithms concerning symplectic matrices are among main Volker’s research
interests along his whole career. Many of his papers and books contain results and algorithms related
to this fundamental group of matrices and its applications to systems and control theory, as well as
to classical mechanics and Hamiltonian dynamical systems, see for instance [6, 7, 5] and many other
references therein. A technique that Volker has very often used in his theoretical and numerical work on
symplectic matrices is to factor a general symplectic matrix into finite products of simpler symplectic
matrices that reveal important properties of the original symplectic matrix. This strategy has deeply
influenced the research in this area (see [3] and the references therein) and, in particular, a simple
but fundamental symplectic factorization lemma proved by Volker in late 1980’s was the starting point
of my papers [1, 2]. In addition, this symplectic factorization strategy is also the main thread of
the unpublished survey-biased manuscript [4], coauthored by Steven Mackey, Nil Mackey, and Volker,
which is also closely connected with [1, 2]. This talk has to main purposes: first, to summarize some
key factorizations of symplectic matrices developed by several authors since the 1980’s, with special
attention to those included in [1, 2, 4]; and, second, to encourage Steven Mackey, Nil Mackey, and
Volker to finish and submit the manuscript [4].
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Current control design techniques require system models of moderate size to be applicable. The genera-
tion of such models is challenging for complex systems which are typically described by partial differential
equations (PDEs), and model-order reduction or low-order-modeling techniques have been developed
for this purpose. Many of them heavily rely on the state space models and their discretizations. How-
ever, in control applications, a sufficient accuracy of the models with respect to their input/output
(I/O) behavior is typically more relevant than the accurate representation of the system states.
In this talk, we present a discretization framework which has been developed recently [1] and which
heavily focuses on the I/O map of the original PDE system. In particular, the proposed direct discretiza-
tion of the I/O map of a linear time-invariant system comes with error bounds measuring the relevant
I/O error. We show how the discretized I/O map can be realized as a matrix. By tensor techniques the
I/O matrix can be further reduced to a very low-dimensional map which is shown to be beneficial in a
control application.
For special choices of input and output spaces, the proposed reduction coincides with the well-known
Proper Orthogonal Decomposition (POD) method. Turning this argument around, we find that the
method of discretizing I/O maps can be employed for a generalization of the common POD method.
We present numerical examples [2] that demonstrate the benefits of generalized POD.
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In [1], inequalities satisfied by the traces of powers of a special nonnegative matrix arising in the study
of the nonnegative inverse eigenvalue problem are found and results on the coefficients of certain related
power series derived. Here, we answer similar questions for certain patterned matrices. Let Pn be the
n×n permutation matrix corresponding to the cycle (1 2 . . . n) and let Cn be the circulant Pn+P−1n .
Using power series, we study the traces of the powers of Cn and several related matrices associated
with orthogonal polynomials. The expansion in powers of t of(

2

1 +
√

1− 4t2

)c
plays a fundamental role.
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Computing the roots of scalar and matrix polynomials expressed in the Chebyshev basis {Tk(x)} is a
fundamental problem that arises in many applications. For instance, a standard way to compute the
real roots of a smooth function f(x) on an interval is to approximate f(x) by a polynomial p(x) via
Chebyshev interpolation. A common way of computing the roots of a polynomial expressed in the
Chebyshev basis is to compute the eigenvalues of its colleague matrix. In this work, we analyze the
backward stability of the polynomial root-finding problem solved with colleague matrices. In other
words, given the polynomial P (x) = Tn(x) +

∑n−1
k=0 AkTk(x), with Ak ∈ Rp×p, expressed in the

Chebyshev basis, the question is to determine whether the whole set of computed eigenvalues of the
colleague matrix, obtained with a backward stable algorithm like the QR-algorithm for the standard
eigenvalue problem, are the set of roots of a nearby polynomial or not. This question was answer by
A. Edelman and H. Murakami in [1] when the polynomial is expressed in the monomial basis. In this
work, we derive a first order backward error analysis of the polynomial root-finding algorithm using
colleague matrices following a different approach to the one followed by A. Edelman and H. Murakami.
Our backward error analysis expands on a very recent work by Y. Nakatsukasa and V. Noferini [2] in
that we show that this algorithm is backward normwise stable if the coefficients of the polynomial P (x)
have moderate norms. We also present numerical experiments that support these theoretical results.
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The effect of a generic rank one perturbation of a general matrix on the Jordan structure has been
studied in several papers. The generic result is that for each eigenvalue the largest Jordan block is split
into simple eigenvalues, while the other Jordan blocks corresponding to that eigenvalue remain (the
Jordan basis changes of course). See [1, 7, 8].
In the talk we consider the effect of a structured but otherwise generic rank one perturbation on
the eigenvalues and Jordan structure of a matrix that has a symmetry property in an indefinite inner
product space. An overview will be given of some of the main results obtained in this area. Compared
to the unstructured case there are some surprises, and we shall focus on what is different from the
unstructured case. These differences are typically connected to paired Jordan blocks corresponding to
specific eigenvalues in the canonical forms for such classes of matrices.
The talk is based on joint work with Volker Mehrmann, Christian Mehl and Leiba Rodman, [2, 3, 4, 5, 6].
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We present a new efficient approach for the solution of the `p-`q minimization problem based on
the application of successive orthogonal projections onto generalized Krylov subspaces of increasing
dimension. The subspaces are generated according to the iteratively reweighted least-squares strategy
for the approximation of `p/`q-norms by weighted `2-norms. Computed image restoration examples
illustrate that it suffices to carry out only a few iterations to achieve high-quality restorations. The
combination of a low iteration count and a modest storage requirement makes the proposed method
attractive.

Zdeněk Strakoš strakos@karlin.mff.cuni.cz

On the Vorobyev method of moments
Z. Strakoš1

1Charles University in Prague, Faculty of Mathematics and Physics strakos@karlin.mff.cuni.cz

In 1958 Yu. V. Vorobyev published (in Russian) a book called (in English translation that appeared
in 1965) Method of Moments in Applied Mathematics. As mentioned in the annotation, “This book
presents the theory behind the moment method for finding the eigenvalues of a linear operator ap-
proximately and for solving linear problems.” This book remained within the mathematical community
almost unnoticed. Its importance has been pointed out by Claude Brezinski in 1996 in relation to the
Lanczos method. Influenced by Gene Golub (through his interest in moments), by Volker Mehrmann
(through the discussions on model reduction in control and in PDEs) and others, the author of this
contribution would like to recall some ideas of Vorobyev in relation to some recent context.
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Rank structures in multidimensional matrices
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I would like to discuss the differencies between the new representation formats for multidimensional
matrices, in particular TT and HT formats, and the lines of further development of the cross approx-
imations techniques. Besides that, we consider some new applications to numerical solution of the
Smoluchowski-like equations and the parameter identification problem for some models of biological
systems.

Marc Van Barel marc.vanbarel@cs.kuleuven.be

Generalization of Lagrange linearization for polynomial
eigenvalue problems

M. Van Barel1

1KU Leuven, marc.vanbarel@cs.kuleuven.be

Let P (z) be a polynomial n×n matrix. Consider the following polynomial eigenvalue problem: look for
nonzero vectors v (right eigenvectors) and corresponding eigenvalues λ such that the following equation
is satisfied

P (λ)v = 0.

A linearization of this eigenvalue problem is a square polynomial matrix L(z) of degree 1 such that

U(z)L(z)V (z) =

[
P (z) 0

0 I

]
with U(z) and V (z) unimodular polynomial matrices. Several linearizations have appeared in the
literature based on the representation of the polynomial matrix P (z) in different bases, e.g., degree
graded bases such as the monomial basis, the Chebyshev basis, . . . , or interpolation bases, such as the
Lagrange polynomials.
If the polynomial matrix P (z) has degree N , this matrix is uniquely determined by its values Pi in
N + 1 points σi, i = 0, 1, 2, . . . , N , i.e., Pi = P (σi). A Lagrange-type linearization [1] based on this
representation is

L(z) =


0 P0 · · · PN

−β0In (z − σ0)In
...

. . .

−βNIn (z − σN )In


where the βi are the so-called barycentric weights. In this talk, we will generalize such linearizations
allowing to use value-information of the polynomial matrix in (N + 1)n different points which could
have a beneficial effect on the conditioning of the corresponding eigenvalue problem.
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Structured backward stability of linearizations of polynomial
matrices
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In this talk we discuss the structured backward stability of linearizations of a given polynomial matrix
P (λ) that can be given either in: (i) the classical monomial basis, (ii) the Chebyshev basis, or, (iii)
the barycentric Lagrange basis with given interpolation points. We show that for these different classes
of linearizations, running the QZ algorithm on the linearized pencil yields a relative backward error on
the pencil that can be mapped back to a relative backward error of essentially the same size on the
coefficients of the original representation. In that sense we can say that the computed roots correspond
exactly to the roots of a nearby polynomial matrix where “nearness” has to be interpreted in the
coefficient space of the representation being used. The proofs of these results rely, to a certain extent,
on the concept of dual minimal bases as developed in [1], [2].
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Robert Altmann raltmann@math.tu-berlin.de

Regularization of operator DAEs
R. Altmann1

1TU Berlin, raltmann@math.tu-berlin.de

A general framework for the regularization of constrained PDEs, also called operator differential-
algebraic equations (DAEs), is presented. For this, we consider semi-explicit systems of first order
which includes the Navier-Stokes equations [1].
The proposed reformulation is consistent in the sense that the solution of the PDE remains untouched.
However, one can observe improved numerical properties in terms of the sensitivity to perturbations
and the fact that a spatial discretization leads to a DAE of lower index, i.e., of differentiation index 1
instead of differentiation index 2.
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Nested Krylov methods for shifted linear systems
M. Baumann1 and M. B. van Gijzen2

1Delft Institute of Applied Mathematics, m.m.baumann@tudelft.nl
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Several applications require the solution of a sequence of shifted linear systems of the form

(A− ωkI)xk = b, (5)

where A ∈ CN×N ,b ∈ CN , and {ωk}nk=1 ∈ C is a sequence of n distinct shifts. For example, shifted
linear systems arise in model order reduction as well as in the geophysical exploration of both acoustic
and elastic waves.
In our application, we focus on wave propagation through elastic media in a frequency-domain formula-
tion. This formulation has specific advantages when modeling visco-elastic effects. In order to improve
the imaging of the earth crust, so-called full waveform inversion is computed which is an optimization
problem at multiple wave frequencies. Therefore, the grid size must be small enough to describe the
wave, which for high frequencies results in very large shifted linear systems of the form (5).
In principle, a sequence of shifted systems (5) can be solved almost at the cost of a single solve using so-
called shifted Krylov methods. These methods exploit the property that Krylov subspaces are invariant
under arbitrary diagonal shifts ω to the matrix A, i.e.,

Km(A,b) = Km(A− ωI,b), ∀m ∈ N,∀ω ∈ C. (6)

However, in practical applications, the preconditioning of (5) is required which in general destroys the
shift-invariance property (6). In [1], a polynomial preconditioner that preserves the shift-invariance is
suggested. The presented work [2] is a new approach to the iterative solution of (5). We use nested
Krylov methods that use an inner multi-shift Krylov method as a preconditioner for a flexible outer
Krylov iteration. In order to deal with the shift-invariance, our algorithm assumes the inner Krylov
method to produce collinear residuals for the shifted systems. In my presentation, I will concentrate on
two possible combinations of Krylov methods for the nested framework, namely FOM-FGMRES and
IDR-FQMRIDR. Since residuals in multi-shift IDR are not collinear by default, the development of
a collinear IDR variant which is suitable as an inner method in the new framework is a second main
contribution of our work.
An extension of [2] to shifted systems with multiple right-hand sides B ≡ [b1, ...,b`], ` � N, using
block Krylov methods is subject to our current research.
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Perturbation theory of the Moore-Penrose inverse and the least
squares problem
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The Moore-Penrose pseudo-inverse of an arbitrary matrix has many applications in numerical computa-
tion, statistics, control systems, curve fitting, and differential algebraic equations [5]. It is particularly
useful in dealing with linear least squares problems minx ‖b − Ax‖2, see [1, 4], and very recently the
error analysis of some highly accurate numerical algorithms presented in [3] for structured least square
problems has been based on new perturbation expressions and bounds for the variation of the Moore-
Penrose inverse. In this talk we first discuss some existing results for the additive and multiplicative
perturbation of the Moore-Penrose pseudo-inverse [2] and, second, we extend the perturbation results
that we introduced in [3] to obtain new perturbation bounds using unitarily invariant norms and Q-
norms that improve significantly previous bounds available in the literature. We will comment on future
research on accurate solutions of non-negative constrained least squares problems.
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Ultrametric matrices and the geometric inverse M-matrix
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We describe the symmetric inverse M -matrix problem from a geometric viewpoint. The central question
in the geometric context is, which properties the lower dimensional facets of an n-simplex S guarantee
that S itself has no obtuse dihedral angles. The simplest but strongest of such properties is regularity of
the triangular facets. Slightly weaker is to demand that all triangular facets are strongly isosceles. Even
more general but also more involved is to demand ultrametricity of all threedimensional tetrahedral
facets of S.

As part of our exposition we show that either none, or all so-called vertex Gramians associated with
an n-simplex S are ultrametric. As a result, the inverse of an ultrametric matrix is weakly diagonally
dominant if and only if this inverse is a Stieltjes matrix. Thus, only one of them needs to be proved in
order to obtain both.
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A posteriori error estimates for a class of differential algebraic
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The present work considers two a posteriori error estimates generation for a class of differential alge-
braic equation(DAE)s on singular perturbation problem(SPP)s context. It is well known that the first
challenge to solve a differential algebraic equation is to find a suitable consistent initial condition [4].
However, one can avoid this by making the problem more stiff, which can be done by introducing a
small parameter (known as perturbation parameter) with the derivatives coefficient. In this case, the
solution can have boundary layers. Therefore, the existing numerical analysis with fixed number of
mesh points does not converge on uniform step size. This is because the number of mesh points need
to be proportional to the inverse power of perturbation parameter for the convergence of the solution.
The aim of this contribution is to provide a posteriori error estimates (both linear and of higher order
accuracy) on fixed number points, which works for DAEs as well as for SPPs.

As the model problem, we consider the following two problems on t ∈ Ω = (t0, T ]:
x′1(t) = f1(t, x1(t), x2(t)),

f2(t, x1(t), x2(t)) = 0,

with consistent Initial Conditions,

and


y′1(t) = f1(t, y1(t), y2(t)),

eps y′2 = f2(t, y1(t), y2(t)),

with any Initial Conditions.

(7)

Here, x1(t), y1(t) ∈ Rn1 and x2(t), y2(t) ∈ Rn2 for some positive integers n1 and n2 with n1 + n2 = l
and (eps)n2×n2

= diag(ε, · · · , ε) with 0 < ε � 1. As the limiting process of y(t), we will get an
approximate of x(t). The problem on the right hand side will be solved in singular perturbation context
as the solution derivatives are unbounded, in general.

We have proposed two a posteriori error estimates (1st and 2nd order) for the above two problems.
The key idea of the a posterioriori analysis is to use the stability of the continuous solution via an
M matrix condition. The right hand problem is solved in more general sense where the perturbation
parameters are of different magnitude (eps)l×l = diag(ε1, · · · , εl)(see for e.g., [2]). The error analysis
is based on the adaptive moving mesh algorithm [3] via the mesh equidistribution principle [1] which
starts with an error monitor function and distributes the error in a way so that each subinterval has
same error measurement. The main challenge is to provide an a posteriori monitor function, whose
equidistribution converges to a layer adapted mesh. It is shown that the adaptive mesh will lead to a
uniform mesh if the solution derivatives are all bounded independent of the perturbation parameters.
Therefore, this analysis will easily work for the non singularly perturbed ordinary differential equations.
The present technique does not need the a priori information about the solution (like the location
and width of boundary layers). Theoretically, we have shown that the numerical solution converges
uniformly to the exact solution.
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SOR-like methods for solving the Sylvester equation
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We present new iterative methods for solving large-scale Sylvester equation (AX − XB = C). The
proposed algorithms belong to the class of SOR-like methods, based on the SOR (Successive Over-
Relaxation) method for solving linear systems (the first of the methods was proposed by Z. Woźnicki).
All three are stationary iterative methods for solving AX −XB = C. We discuss convergence char-
acteristics of the methods and present sufficient conditions under which proposed method lSOR-like is
convergent.
We also present an idea of changing the given matrices A and B such that C and solution X remain
the same, but the convergence of any SOR-like method is improved.
Some numerical experiments are given to illustrate the theoretical results and some properties of the
methods.
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Structure preserving and structure exploiting iterative methods have recently recieved considerable
interest in the numerical linear algebra community; see e.g., [1]. Exponential integrators that use
Krylov approximations of matrix functions have turned out to be efficient for the time-integration of
certain ordinary differential equations (ODEs). In this result we will propose a new stucture exploiting
iterative method based on an Arnoldi method and exponential integrators to solve certain types of
ODEs. We consider linear stiff inhomogeneous ODEs, y′(t) = Ay(t) + g(t), where the function g(t)
is assumed to satisfy certain regularity conditions. We derive an algorithm for this problem which is
equivalent to Arnoldi’s method. The construction is based on expressing the function g(t) as a linear
combination of given basis functions [φi]

∞
i=0 with particular properties. The properties are such that the

inhomogeneous ODE can be restated as an infinite-dimensional linear homogeneous ODE. Moreover, the
linear homogeneous infinite-dimensional ODE has properties that allow us to directly extend a Krylov
method for finite-dimensional ODEs. Although the construction is based on an infinite-dimensional
operator, the algorithm can be carried out with operations involving matrices and vectors of finite
size. This type of construction resembles in many ways the infinite Arnoldi method, for nonlinear
eigenvalue problem [2]. We prove convergence of the algorithm under certain natural conditions,
and illustrate properties of the algorithm with examples stemming from the discretization of partial
differential equations.
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H-FAINV: Hierarchically factored approximate inverse
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Given a sparse matrix, its LU-factors, inverse and inverse factors typically suffer from substantial fill-in,
leading to non-optimal complexities in their computation as well as their storage. In the past, several
computationally efficient methods have been developed to compute approximations to these otherwise
rather dense matrices. Many of these approaches are based on approximations through sparse matrices,
leading to well-known ILU, SPAI (sparse approximate inverse) or FSAI (factored sparse approximate
inverse) techniques and their variants. A different approximation approach is based on blockwise low
rank approximations and realized, for example, through hierarchical (H-) matrices. While H-inverses
and H-LU factors have been discussed in the literature, this paper will consider the construction of an
approximation of the factored inverse through H-matrices (H-FAINV). We will describe a blockwise
approach that permits to replace (exact) matrix arithmetic through approximate efficient H-arithmetic.
We conclude with numerical results in which we use approximate factored inverses as preconditioners
in the iterative solution of the discretized convection-diffusion problem.
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The real nonnegative inverse eigenvalue problem (RNIEP) is the problem of characterizing all possible
real spectra of entrywise nonnegative matrices. This problem remains unsolved. Since the first result in
this area announced by Suleimanova in 1949 and proved by Perfect in 1953, a number of realizability
criteria or sufficient conditions for the existence of a nonnegative matrix with a given real spectrum have
been obtained, from different points of view. In [2] the authors construct a map of sufficient conditions
for the RNIEP, in which they show inclusion or independency relations between these conditions.
If in the RNIEP we require that the nonnegative matrix be symmetric, we have the symmetric nonneg-
ative inverse eigenvalue problem (SNIEP). The first known sufficient condition for the SNIEP is due to
Perfect and Mirsky in 1965 for doubly stochastic matrices, and Fiedler gave in 1974 the first symmetric
realizability criteria for nonnegative matrices. It is well known that these two problems are equivalent
for spectra of size n ≤ 4 and a complete solution of both is known only for n ≤ 4. For n ≥ 5 they are
different and both problems remain open.
Given a real spectrum σ verifying a sufficient condition X, we introduce the X-margin of realizability
of σ to measure how much we can decrease the spectral radius of σ preserving the sufficient condition
X. We analyze several sufficient conditions from the point of view of their margin of realizability [1].
Since 2007 new sufficient conditions for the RNIEP have appeared. We discuss new relations of inclusion
or independency between these new sufficient conditions and the previous ones studied in [3]. We also
construct a map of sufficient conditions for the SNIEP [4]. Finally, we describe and discuss some open
problems of interest in this context.
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We consider the following PDE–eigenvalue problem, which arises in the study of waves traveling in a
periodic medium [1]: determine a non–trivial function u(x, z) and a complex number γ such that

∆u(x, z) + 2γuz(x, z) + (γ2 + κ(x, z)2)u(x, z) = 0, (x, z) ∈ R2, (8a)

u(x, z) = u(x, z + 1) for all (x, z) ∈ R2, (8b)

u(x, ·) → 0 when |x| → ∞. (8c)

The function κ(x, z) is piecewise constant and is assumed to satisfy: κ(x, z) = κ− when x ≤ x−,
κ(x, z) = κ+ when x ≥ x+ and κ(x, z) = κ(x, z+ 1). This problem can be rephrased as an equivalent
problem on a finite domain by means of a Dirichlet–to–Neumann map. A particular type of finite-
element discretization of the finite-domain problem leads to the following nonlinear eigenvalue problem,
which consists of finding pairs (γ, v) ∈ C× (Cn \ {0}) such that(

Q(γ) C1(γ)
CT2 RΛ(γ)R−1

)
v = 0. (9)

The matrices Q(γ) and C1(γ) are polynomials of second degree in γ. The matrix Λ(γ) is diagonal
and involves square roots of polynomials in γ. The problem (9) is a large–scale nonlinear eigenvalue
problem of the type extensively studied in recent literature [2]. The algorithm we propose is based on
the infinite Arnoldi method [3], which can be interpreted as the standard Arnoldi method applied to a
linear and infinite dimensional eigenvalue problem. In the new algorithm, we suggest to represent the
basis of the Krylov subspace as a factorization involving a tensor. This factorization allows us to reduce
the memory requirements and the computation time. By construction, this new algorithm, which we
call the tensor infinite Arnoldi method, is mathematically equivalent to the infinite Arnoldi method.
The infinite Arnoldi method requires efficient procedures to compute the derivatives of the functions
that define the nonlinear eigenvalue problem. For this problem such derivatives can be computed with
a closed and efficient formula. Moreover we exploit sparsity and low–rank structure of the nonlinear
eigenvalue problem. The matrix-vector product corresponding to R and R−1 can be computed with
the Fast Fourier Transform (FFT).

References

[1] J. Tausch, J. Butler, Floquet multipliers of periodic waveguides via Dirichlet-to-Neumann maps.
Journal of Computational Physics 159.1 (2000): 90-102.

[2] V. Mehrmann, H. Voss, Nonlinear eigenvalue problems: A challenge for modern eigenvalue meth-
ods. GAMM-Mitteilungen, 27.2 (2004): 121-152.

[3] E. Jarlebring, W. Michiels, K. Meerbergen, A linear eigenvalue algorithm for the nonlinear eigen-
value problem. Numerische Mathematik, 122.1 (2012): 169-195.



VM60 2015 61

Hermann Mena hermann.mena@uibk.ac.at

Drugs, herbicides and numerical simulations
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Glyphosate is one of the herbicides used by the Colombian government to spray coca fields. Sprays
took place for a number of years and were more frequent between 2000 and 2006. The spray drifts
at the Ecuador-Colombia border became an issue for people living close to the border. We propose a
mathematical model for the Glyphosate aerial spray drift at the Ecuador-Colombia border. The model
takes into account the particular guidelines that aircrafts follow to perform the sprays. Numerical
simulations in 2D and 3D are performed at sensitive zones along the Ecuador-Colombia border. The
lack of reliable information constrains the accuracy of the model. However, the results presented in this
work can be used as a starting point for more accurate models of the phenomena.
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Modeling of the crosstalk phenomenon for electro-magnetic
systems by bilateral coupling of PDEs and DAEs
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Modeling the electro-magnetic disturbances between electrical elements which are sitting in an electro-
magnetic system, the so-called crosstalk phenomenon, may lead to differential-algebraic equations
(DAEs). In this poster, we propose a new modeling approach to describe the crosstalk phenomenon
for electro-magnetic systems and, in particular, in electrical circuits by bilateral coupling of two sets of
equations. The first set is a set of DAEs, the so-called circuit equations, i.e., the Kirchhoff current law
as well as constitutive laws of the inductors and the voltage sources and presented in our model in the
framework of modified nodal analysis, e.g. [1]. The second set is the set of partial differential equa-
tions (PDEs), the so-called non-stationary Maxwell equations, e.g. [2], modeling the induction of the
electro-magnteic disturbances. Considering these two sets of equations as input-output subsystems, the
bilateral coupling approach connects the output of one subsystem to the input of the other subsystem
and conversely, via coupling and re-coupling relations. These relations, which are in principle physical
constitutive laws, are introduced in our model by suitable operator structures [3]. The coupling of these
two sets of equations leads to a set of partial differential-algebraic equations as the model equations
for the crosstalk phenomenon in electrical circuits.
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In the landmark paper [1], I. Gohberg, P. Lancaster and L. Rodman introduced and developed the theory
of sign characteristic of Hermitian matrix polynomials with nonsingular leading coefficients. In this talk,
we extend the theory to any Hermitian matrix polynomial. We show that a signature constraint theorem
still holds. We also analyze in detail the consequences on the perturbation theory of regular selfadjoint
matrix functions, and we give some examples of the applications of the new results.
This talk is based on joint work with V. Mehrmann, F. Tisseur, and H. Xu.
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The Kaczmarz Extended (KE) algorithm has been proposed by the author in [2, 3] as an extension of
the Kaczmarz-Tanabe algorithm from [4], to inconsistent linear least squares problems. It uses in each
iteration orthogonal projections onto the hyperplanes determined by all the rows and all the columns
of the system matrix. Recently, in the paper [5], the authors proposed a single projection KE type
algorithm, which in each iteration uses orthogonal projections onto the hyperplanes determined by only
one row and one column. If the projection row and column indices i and j are selected at random
with probability proportional with a certain quotient of the norm of the i-th row, and j-th column,
respectively, they prove that the sequence of approximations so generated converges in Expectation to
a least square solution of the problem.
In this paper we propose two single projection KE type algorithms, in which the projection indices are
selected in an almost cyclic, and remote control maner, respectively (see e.g. [1]). We prove that the
sequence of approximations generated in each case converges in norm to a least square solution of the
problem.
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The Gauss quadrature rule is a method for the approximation of positive-definite linear functionals. The
link between Gauss quadrature, orthogonal polynomials theory and (real) Jacobi matrices is well-known.
We show a way to generalize the concept of Gauss quadrature for the approximation of quasi-definite
linear functionals. To achieve this result we need to introduce the concept of complex Jacobi matrix
as define in [1] by Beckermann. The generalization of Gauss quadrature still maintains a relationship
with orthogonal polynomials theory and with the complex Jacobi matrices.
Furthermore, this result is linked with the approximation through Krylov methods of bilinear forms such
as u∗f(A)v, where A is a matrix, u,v two vectors and f a matrix function. In future we are going to
work on this and analyze some possible applications, for example the approximation of centrality indices
in the complex networks theory.
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We explore dimensionality reduction in the context of model based and model free approaches. In the
model based approach there is a governing equation or a set of rules relating quantities of interest,
whereas in a model free setting there are no rules or equations, only data is available. As an example
consider the problem of squealing noise in a brake. The model based approach relates quantities of
interest like mass distribution within the brake, damping, stiffness and other properties of a brake
material, speed of rotation etc with a dynamical equation, the steady state behaviour can be obtained
by converting it to an eigenvalue problem and finding eigenvalues and eigenvectors (which are related
to squeal frequency and mode shapes of a disc brake). The model reduction problem could be posed as
projecting the eigenvalue problem to a lower dimensional space, while preserving important eigenvalues
and eigenvectors. In constrast, the model free approach starts with data, i.e., a set of parameter values
which correspond to squeal and the values which correspond to no-squeal. If the number of parameters
responsible for squeal is very large, then dimensionality reduction is concerned with reducing the number
of these parameters or ranking these parameters in order of importance. We illustrate pros and cons of
model based and model free dimensionality reduction with some numerical examples.
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We consider parameter dependent matrix eigenvalue problems for partial differential equations (PDEs)
discretised by the finite element method (FEM). For an analytic dependency of eigenfunctions and
eigenvalues on the parameter, let it k, we propose an adaptive strategy for the parameter sampling
based on first and higher derivatives of the eigenvalues [1]. We obtain the derivatives for a single
parameter value post-processing an eigenvalue and the corresponding eigenvector. For each second and
higher derivative a sparse linear system of equations has to be solved. Then, with Taylor’s theorem an
high-order approximation of the eigenvalue in dependence of the parameter is given. Estimating the
residual of the Taylor expansion we decide for a local step size h(k) and solve the eigenvalue problem
at k+ h(k). In this way for each band ωn(k) an own adaptive sampling strategy is chosen. Evaluating
the derivatives ω′j(kc), ω′j+1(kc) we can verify if on k = kc two bands cross indeed each other or if
they almost touch each other (mini-stop band). In the latter the algorithm re-started at k = kc refines
adaptively around the mini-stop band.

The algorithm is applied for the calculation of bandstructure of photonic crystals and photonic crys-
tal wave-guides, where the eigenfrequencies ωj(k) in dependency of the quasi-momentum k ∈ B are
searched in the Brillouin zone B. For photonic crystal wave-guides eigenvalue problem depends nonlin-
early on the quasi-momentum k through Dirichlet-to-Neumann boundary conditions [2].
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An n × n regular matrix pencil L(z) = zA + B is said to be structured if (A,B) belong to a special
subset of (Cn×n)2. Matrix pencils arising in most applications follow some structure and the use of
structure-preserving algorithms is advisable for solving them. Structure preserving perturbation analysis
is necessary to assess the accuracy of such algorithms. This involves computing backward errors with
respect to structure preserving perturbations which we refer to as structured backward errors.
The structured eigenvalue backward errors are important for the stability analysis of structure preserving
algorithms that compute only eigenvalues and for solving distance problems involving structured matrices
[4]. Explicit formulas for structured eigenpair backward errors of matrix pencils have been developed
in [1, 2, 3] for a number of important structures. However, structured eigenvalue backward errors have
not been obtained in these works. Motivated by such considerations, explicit formulas for structured
eigenvalue backward errors have been obtained for matrix pencils with Hermitian and related structures
in [5] and for palindromic structures in [6] with respect to the norm

√
‖A‖22 + ‖B‖22 on L(z), where

‖ · ‖2 is the matrix 2-norm.
In this talk, we briefly present some of the main results in [5] and [6], and focus on extensions to
the case where the norm on L(z) is max{‖A‖2, ‖B‖2}. An important structure that often arises in
applications is when the coefficient matrices of the pencil L(z) are real. Understanding the effect of real
perturbations on real matrix pencils is a challenging task. The real eigenvalue and eigenpair backward
errors are not known for real matrix pencils even when they have no additional structure. We present
some results for structured eigenvalue/eigenpair backward errors of real structured pencils with respect
to perturbations that preserve realness as well as additional symmetries. All the results are illustrated
by numerical experiments.
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The polynomial eigenvalue problem is to find the eigenpair of (λ, x) ∈ C
⋃
{∞}×Cn\{0} that satisfies

P (λ)x = 0, where P (λ) =
∑s
i=0 Piλ

i is an n× n so-called matrix polynomial of degree s, where the
coefficients Pi, i = 0, · · · , s, are n × n constant matrices, and Ps is supposed to be nonzero. These
eigenvalue problems arise from a variety of physical applications including acoustic structural coupled
systems, fluid mechanics, multiple input multiple output systems in control theory, signal processing,
and constrained least square problems. Most numerical approaches to solving such eigenvalue problems
proceed by linearizing the matrix polynomial into a matrix pencil of larger size.
Such methods convert the eigenvalue problem into a well-studied linear eigenvalue problem, and mean-
while, exploit and preserve the structure and properties of the original eigenvalue problem. The lineariza-
tions have been extensively studied with respect to the basis that the matrix polynomial is expressed in.
If the matrix polynomial is expressed in a special basis, then it is desirable that its linearization be also
expressed in the same basis. The reason is due to the fact that changing the given basis ought to be
avoided [3]. The authors in [1] have constructed linearization for different bases such as degree-graded
ones (including monomial, Newton and Pochhammer basis), Bernstein and Lagrange basis. This con-
tribution is concerned with polynomial eigenvalue problems in which the matrix polynomial is expressed
in Hermite basis. In fact, Hermite basis is used for presenting matrix polynomials designed for matching
a series of points and function derivatives at the prescribed nodes.
In the literature, the linearizations of matrix polynomials of degree s, expressed in Hermite basis, consist
of matrix pencils with s+ 2 blocks of size n× n. In other words, additional eigenvalues at infinity had
to be introduced, see e.g. [2]. In this research, we try to overcome this difficulty by reducing the size
of linearization. The reduction scheme presented will gradually reduce the linearization to its minimal
size making use of ideas from [4]. More precisely, for n× n matrix polynomials of degree s, we present
linearizations of smaller size, consisting of s+ 1 and s blocks of n× n matrices. The structure of the
eigenvectors is also discussed.
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We present some new techniques for solving a family (or a sequence of families) of linear systems in
which the coefficient matrices differ only by a scalar multiple of the identity (shifted systems). Our goal
is to develop methods for shifted systems which have fewer restrictions usually associated with such
methods (e.g., all residuals needing to be collinear).
The systems are parameterized by i,

Ax = b and (A+ σiI)x(σi) = b(σi), i = 1, 2, . . . , L, (10)

with A ∈ Cn×n and {σ1, . . . σL} ⊂ C. We can add a new parameter j, indexing a sequence of matrices
{Aj} ⊂ Cn×n, and for each j we solve a family of systems

Ajxj = bj and (Aj + σi,jI)x(σi,j) = b(σi,j), i = 1, 2, . . . , Lj , where {σi,j}Lj

i=1 ⊂ C. (11)

Many methods have been proposed for solving (10) are built upon the invariance of Krylov subspaces
under a scalar shift, i.e.,

Kj(A, r0) = Kj(A+ σI, r0(σ)) (12)

which holds as long as the collinearity condition r0(σ) = βσr0 is satisfied. This allows us to generate
approximate solution corrections for all linear systems in (10) from the common Krylov subspace. These
methods can be quite effective and allow for a great savings in both storage and computational costs.
However, building methods on top of the invariance (12) introduces a severe restriction on the class of
problems we can treat. Furthermore, we have shown that this restriction also hampers the integration
of augmentation methods such as subspace recycling [2] into this setting in order to treat (11); see, [5].
Here we propose a technique which circumvent this problem while still taking advantage of the invariance
(12). Block Krylov subspaces are shift invariant just as their single-vector counterparts. Thus by
collecting all initial residuals into one block vector, we can generate a block Krylov subspace. Due to
shift invariance, we can define block FOM- and GMRES-type projection methods to simultaneously solve
all shifted systems. These are not block versions of the shifted FOM method [3] or the shifted GMRES
method [1]. These methods are compatible with unrelated right-hand sides and residual collinearity is
no longer a requirement at restart. Due to this special manner in which we take advantage of (12),
subspace recycling may be integrated into the proposed methods in order to treat (11).
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We consider a mechanical system excited by an external force. Model of such a system is described
by the system of ordinary differential equations: Mẍ(t) + Dẋ(t) + Kx(t) = f̂(t), where matrices

M,K (mass and stiffness) are positive definite and the vector f̂ corresponds to an external force. The
damping matrix D is assumed to be positive semidefinite and has a small rank.
The motivation for our approach has been posted in [2, Section 17] and it is related to the harmonic
response of the mechanical system under the influence of the harmonic force. Here we consider ex-
ternal function consisting of simple oscillating functions which is motivated by Fourier series which
decomposes periodic functions into the sum of a set of simple oscillating functions. In this setting, we
consider criterions average energy amplitude and average displacement amplitude that allow damping
optimization of mechanical system excited by an external force.
Since in general a damping optimization is a very demanding problem, we provide a new explicit
formulas which have been used for efficient damping optimization. The efficiency of new formulas has
been illustrated with a numerical examples.
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For a given matrix subspace, how can we find a basis that consists of low-rank matrices? This problem
is a generalization of the sparse vector problem. When the subspace is spanned by rank-one matrices,
a solution is equivalent to a tensor CP decomposition. If the information on the rank-one basis is
not given in advance, or if the space is spanned by matrices of higher rank, the situation is not as
straightforward. By standard arguments from matroid theory, the problem can be in theory solved using
a greedy algorithm. In this work we present a practical algorithm that mimics this greedy procedure. It
finds basis elements one by another in two stages, by first estimating a minimal rank by applying soft
singular value thresholding to a nuclear norm relaxation, and then computing a matrix with that rank
using the method of alternating projections. Given the hardness of the problem, our method provides
surprisingly reliable results in a number of experiments. Potential applications include data compression
beyond the classical truncated SVD, computation of “low-rank” eigenvectors to simple or even multiple
eigenvalues, image separation, and others.
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One of themes that constantly appears in Volker’s work is the linear-quadratic optimal control problem
for linear time-invariant differential-algebraic equations, see, e.g., the monograph [1]. Volker and many
other authors approached this problem by various techniques but to our best knowledge all of these put
restrictive assumptions on the control system or the cost functional. In this talk we will discuss a new
approach to overcome these restrictions by considering a Lur’e matrix equation on the system space,
i.e., the space in which the solution trajectories of the system evolve. We will further study stabilizing
and extremal solutions of this equation which can be used to construct optimal stabilizing feedbacks.
These results can be interpreted as a generalization of the algebraic Riccati equation to a much larger
class of linear-quadratic optimal control problems [2, 3].
If time permits we will discuss existence and uniqueness of the optimal control which can be characterized
in terms of the zero dynamics of the closed-loop system.
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We investigate numerical methods to efficiently solve algebraic Riccati equations (ARE) like

R(X) = CTC +ATX +XA−XBBTX = 0 (13)

with C ∈ Rp×n, A ∈ Rn×n, X = XT ∈ Rn×n, B ∈ Rn×r, p+r � n, by combing existing approaches.
These quadratic matrix equations have to be solved, e.g., in optimal control problems to apply a linear
quadratic regulator (LQR) approach [6, 7].
Our aim is an iterative solver for (13) based on the Newton-ADI method. Recent ADI improvements in
[2, 3, 4] in combination with the inexact Kleinman-Newton approach in [5] and the line search method
in [1] are the key ingredients to our novel approach that can handle large-scale problems efficiently.
We show theoretical as well as numerical results that illustrate the usability of the novel approach as
well as its advantages.
The open problem of controlling the accuracy of the solver for the shifted linear systems appearing in
each ADI step will also be addressed shortly.
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Kürschner, Patrick MPI for Dynamics of Complex Technical Systems
Magdeburg, Germany
kuerschner@mpi-magdeburg.mpg.de

Kunkel, Peter Mathematisches Institut
Universität Leipzig
Leipzig, Germany
kunkel@math.uni-leipzig.de

21

Kutyniok, Gitta TU Berlin
Berlin, Germany
kutyniok@math.tu-berlin.de

Laffey, Thomas J. School of Mathematical Sciences, UCD
Dublin, Ireland
thomas.laffey@ucd.ie

44

Lamour, René HU Berlin
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Pérez Álvaro, Javier The University of Manchester
Manchester, England
javier.perezalvaro@manchester.ac.uk

45

Pfetsch, Marc TU Darmstadt
Darmstadt, Germany
pfetsch@opt.tu-darmstadt.de

Poloni, Federico Università di Pisa
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