Prof. Dr. P. Wittbold

Institut für Mathematik

Martha Hubski

www.math.tu-berlin.de/Vorlesungen/SoSe08/Analysis2/

1. Übungsblatt zur VL Analysis II

Wiederholung: Gleichmäßige Konvergenz Abgabe: 28.04.2008 vor Beginn der Übung

Hinweise zur Bearbeitung der Übungsblätter

- Die Hausaufgaben werden in festen Zweier-Gruppen bearbeitet und sind jede Woche vor Beginn der Ubung abzugeben. Einzelabgaben oder spätere Abgaben sind nicht möglich.
- Auf jede Abgabe gehört:
 - Nummer des laufenden Übungsblattes, Datum
 - Eure vollständigen Namen und Matrikelnummern
 - Name des Tutors/der Tutorin und Tutoriumstermin
- Schreibt sauber und achtet auf mathematisch korrekte Formulierungen der Beweise. Es können bis zu 50% der möglichen Aufgabenpunkte für formale Fehler abgezogen werden.

ÜBUNG

1. Aufgabe

Sei $D \subseteq \mathbb{R}$ und $(f_n)_{n \in \mathbb{N}}$ eine Folge von Funktionen $f_n : D \to \mathbb{R}$. Zeige, dass $(f_n)_{n \in \mathbb{N}}$ genau dann auf D gleichmäßig gegen eine Funktion $f:D\to\mathbb{R}$ konvergiert, wenn

$$\lim_{n \to \infty} \sup_{x \in D} |f_n(x) - f(x)| = 0.$$

2. Aufgabe

Sei $(f_n)_{n \in \mathbb{N}}$ eine Folge stetiger Funktionen $f_n : [a, b] \to \mathbb{R}, a < b,$ mit

$$f_n(x) \ge f_{n+1}(x) \quad \forall n \in \mathbb{N}, \, \forall x \in [a, b].$$

Zeige: Konvergiert $(f_n)_{n\in\mathbb{N}}$ auf [a,b] punktweise gegen 0, d.h. $\lim_{n\to\infty} f_n(x) = 0 \ \forall x\in[a,b]$, so konvergiert $(f_n)_{n\in\mathbb{N}}$ auf [a,b] auch gleichmäßig.

3. Aufgabe

Sei $D \subseteq \mathbb{R}$ und $(f_n)_{n \in \mathbb{N}}$ eine Folge von Funktionen $f_n : D \to \mathbb{R}$, die gleichmäßig gegen eine Funktion $f:D\to\mathbb{R}$ konvergiert. Zeige: f ist genau dann beschränkt, wenn fast alle f_n beschränkt sind.

4. Aufgabe (gleichmäßiges Majorantenkriterium)

Sei $D \subseteq \mathbb{R}$ und $(f_n)_{n \in \mathbb{N}}$ eine Folge von Funktionen $f_n : D \to \mathbb{R}$.

Zeige: Existiert eine Folge reeller Zahlen $(b_n)_{n\in\mathbb{N}}$, so dass

$$|f_n(x)| \le b_n \quad \forall x \in D, \, \forall n \in \mathbb{N} \quad \text{und} \quad \sum_{n=0}^{\infty} b_n \text{ konvergiert,}$$

dann konvergiert die Reihe $\sum\limits_{n=0}^{\infty}f_{n}$ gleichmäßig auf D.

HAUSAUFGABEN

1. Aufgabe (8 Punkte)

Betrachte die Folge $(f_n)_{n\in\mathbb{N}}$ von Funktionen $f_n:[-1,1]\to\mathbb{R}$, gegeben durch

$$f_n(x) = \begin{cases} -1 & \text{für } -1 \le x \le -\frac{1}{n} \\ nx & \text{für } -\frac{1}{n} < x < \frac{1}{n} \\ 1 & \text{für } \frac{1}{n} \le x \le 1 \end{cases}.$$

Untersuche $(f_n)_{n\in\mathbb{N}}$ auf Stetigkeit, punktweise und gleichmäßige Konvergenz.

2. Aufgabe (8 Punkte)

Sei $f_n: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f_n(x) = e^{-\frac{x^2}{n}}, \quad n \in \mathbb{N}.$$

Untersuche die Folge $(f_n)_{n\in\mathbb{N}}$ auf gleichmäßige Konvergenz auf dem Intervall [-a,a] für a>0 und auch auf ganz \mathbb{R} .

3. Aufgabe (10 Punkte)

Untersuche die folgenden reellen Funktionenreihen auf gleichmäßige Konvergenz:

- (a.) $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$ auf ganz \mathbb{R} .
- (b.) $\sum_{n=0}^{\infty} x^n$ auf ihrem ganzen Konvergenzintervall.

4. Aufgabe (14 Punkte)

(a.) Sei $D \subseteq \mathbb{R}$ und $(f_n)_{n \in \mathbb{N}}$ eine Folge von Funktionen $f_n : D \to \mathbb{R}$. Zeige mithilfe des gleichmäßigen Majorantenkriteriums, dass wenn eine Folge reeller Zahlen $(b_n)_{n \in \mathbb{N}}$ existiert mit

$$|f_{n+1}(x) - f_n(x)| \le b_n \quad \forall x \in D, \, \forall n \in \mathbb{N} \quad \text{und} \quad \sum_{n=0}^{\infty} b_n \text{ konvergiert},$$

so konvergiert die Folge $(f_n)_{n\in\mathbb{N}}$ gleichmäßig auf D.

(b.) Für $n \ge 1$ und $x \in [0, +\infty)$ sei

$$f_n(x) = \sum_{k=1}^n \frac{1}{k+x} - \ln(n+x).$$

Zeige, dass $(f_n)_{n\geq 1}$ auf $[0,+\infty)$ gleichmäßig konvergiert. Verwende hierfür Aufgabenteil (a.) und die Tatsache, dass für ein geeignetes C>0 gilt:

$$|\ln(1+u) - u| \le Cu^2$$
 für $u \in (-\frac{1}{2}, +\infty)$.

(Gesamtpunktzahl: 40 Punkte)