www.math.tu-berlin.de/Vorlesungen/SoSe08/Analysis2/

5. Übungsblatt zur VL Analysis II

Metrische Topologie, Vollständigkeit Abgabe: 26.05.2008 **vor Beginn** der Übung

ÜBUNG

1. Aufgabe

Gib Beispiele für Folgen von offenen Teilmengen von \mathbb{R} an, deren Durchschnitt abgeschlossen, offen bzw. weder offen noch abgeschlossen ist.

2. Aufgabe

Sei (X, d) ein metrischer Raum und $Y, Z \subset X$. Beweise die folgenden Behauptungen:

- a) Y offen $\iff \partial Y \cap Y = \emptyset$.
- b) Y abgeschlossen $\iff \partial Y \subset Y$.
- c) $\overline{Y \cup Z} = \overline{Y} \cup \overline{Z}$ und $\overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z}$. Finde ausserdem ein Beispiel, wo $\overline{Y \cap Z} \neq \overline{Y} \cap \overline{Z}$ gilt.
- d) $X \setminus \overset{\circ}{Y} = \overline{X \setminus Y}$ und $X \setminus \overline{Y} = (X \setminus Y)^0$

3. Aufgabe

Seien $a, b \in \mathbb{R}$ mit a < b. Beweise die folgenden Behauptungen.

- a) Auf $C^0[a,b]$ definiert $d(f,g) := \int_a^b |f(x) g(x)| \,\mathrm{d} x$ eine Metrik.
- b) Die offenen Mengen von $(C^0[a,b],d)$ sind auch in $(C^0[a,b],d^{\sup})$ offen, wobei $d^{\sup}(f,g)=\sup_{x\in[a,b]}|f(x)-g(x)|$.
- c) Zu jedem $\varepsilon > 0$ und jedem k > 0 gibt es eine Funktion $g \in C^0[a, b]$ mit $d^{\sup}(0, g) > k$ und $d(0, g) < \varepsilon$. Insbesondere gilt die Umkehrung von b) nicht.

HAUSAUFGABEN

1. Aufgabe (8 Punkte)

Welche der folgenden Teilmengen des \mathbb{R}^2 sind offen, welche sind abgeschlossen? Begründet eure Entscheidung und skizziert die Mengen.

a)
$$A_1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 > 4\}$$

b)
$$A_2 = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$$

c)
$$A_3 = A_1 \cap A_2$$

d)
$$A_4 = A_1 \cup A_2$$

e)
$$A_5 = A_3 \cap \{(x,y) \in \mathbb{R}^2 \mid x \le 5\}$$

2. Aufgabe (10 Punkte)

Sei (X, d) ein metrischer Raum. Sei $\emptyset \neq A \subset X$ und d_A die durch d auf A induzierte Metrik. Beweise die folgenden Behauptungen.

- a) Falls $U \subset A$ offen in (X, d) ist, so ist U auch offen in (A, d_A) . Gebt ein Beispiel dafür an, dass die Umkehrung im Allgemeinen nicht gilt.
- b) $U \subset A$ ist genau dann offen in (A, d_A) , wenn es eine in (X, d) offene Menge $W \subset X$ gibt mit $U = W \cap A$.

3. Aufgabe (10 Punkte)

a) Sei (X, d) ein metrischer Raum. Für $x \in X$ und $A \subset X$ definiere

$$dist(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Sei A abgeschlossen. Zeige, dass genau dann $\operatorname{dist}(x, A) = 0$, wenn $x \in A$ ist.

b) Sei $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ für alle $x, y \in \mathbb{R}$ definiert durch

$$d(x, y) := |\arctan(x) - \arctan(y)|.$$

Zeige, dass (\mathbb{R}, d) ein nicht-vollständiger metrischer Raum ist.

4. Aufgabe (12 Punkte)

Sei $(X_i, d_i)_{i \in \mathbb{N}_0}$ eine Folge von metrischen Räumen und betrachte

$$X = \prod_{i=0}^{\infty} X_i = \{(x_i)_{i \in \mathbb{N}_0} \mid x_i \in X_i \text{ für alle } i \in \mathbb{N}_0\}.$$

a) Zeige, dass die Abbildung $d\colon X\times X\to\mathbb{R}$, definiert für $x,\,y\in X$ durch

$$d(x,y) := \sum_{i=0}^{\infty} \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1 + d_i(x_i, y_i)},$$

eine Metrik auf X ist.

Hinweis: Zeige und verwende, dass die Funktion $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$, $f(t) = \frac{t}{1+t}$ streng monoton wachsend ist.

b) Sei $k \in \mathbb{N}_0$ fest. Für $i \neq k$ sei $U_i = X_i$ und $U_k \subset X_k$ eine beliebige offene Menge in (X_k, d_k) . Zeige, dass die Menge $U = \prod_{i=0}^{\infty} U_i$ offen in (X, d) ist.

Zusatzaufgabe (10 Punkte)

Betrachte den metrischen Raum (\mathbb{R}, d) aus Hausaufgabe 3 b).

Sei $U \subset \mathbb{R}$. Zeige, dass U genau dann offen in (\mathbb{R}, d) ist, wenn U offen in (\mathbb{R}, d^1) ist, wobei d^1 die Standardmetrik auf \mathbb{R} bezeichnet. (Damit stimmen die offenen Mengen von (\mathbb{R}, d) mit denen von (\mathbb{R}, d^1) überein.)

(Gesamtpunktzahl: 40+10 Punkte)