Technische Universität Berlin

SoSe 2013

Institut für Mathematik http://www3.math.tu-berlin.de/Vorlesungen/SS13/LinAlg1/Prof. Dr. O. Holtz, Dr. A. Miedlar Stand: 28. Juni 2013

Lineare Algebra I – Tutoriumsaufgabe 12

Tutoriumsvorschläge

1. Aufgabe

Betrachten Sie die durch $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 0 \\ 4 & 1 & 1 \end{bmatrix} \in \mathbb{R}^{3,3}$ gegebene lineare Abbildung auf $\mathbb{R}^{3,1}$. Bestimmen Sie Kern(A) sowie dim \mathbb{R} (Kern(A)). Bestimmen Sie hieraus dim \mathbb{R} (Bild(A)) und berechnen Sie anschließend eine Basis von Bild(A).

2. Aufgabe

Sei $\mathcal{B} = \{p_1, p_2, p_3\}$ eine (die!) Basis von $\mathbb{R}[t]_{\leq 2}$ mit $\Phi_{\mathcal{B}}(a_2t^2 + a_1t + a_0) = \begin{bmatrix} a_2 - a_0 \\ a_2 + a_1 \\ a_1 + 2a_0 \end{bmatrix}$.

- 1.) Bestimmen Sie $\Phi_{\mathcal{B}}^{-1}\left(\left[\begin{smallmatrix} a\\b\\c \end{smallmatrix}\right]\right)$.
- 2.) Bestimmen Sie \mathcal{B} .

3. Aufgabe

Sei $V\subseteq\mathbb{C}^{2,2}$ der Vektorraum der oberen 2×2 -Matrizen und seien

$$\mathcal{B}_1 := \left\{ \left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 & 2 \\ 0 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 & 2 \\ 0 & 3 \end{smallmatrix} \right] \right\}, \quad \mathcal{B}_2 := \left\{ \left[\begin{smallmatrix} 1 & 1 \\ 0 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 1 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] \right\}.$$

Dann sind \mathcal{B}_1 und \mathcal{B}_2 Basen von V (dies braucht nicht gezeigt zu werden). Weiter sei

$$f: V \to V, \quad \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix} \right] \mapsto \left[\begin{smallmatrix} c & b+c \\ 0 & a+b+c \end{smallmatrix} \right].$$

- 1.) Bestimmen Sie $\dim_{\mathbb{C}}(V)$.
- 2.) Bestimmen Sie $\Phi_{\mathcal{B}_1}$.
- 3.) Zeigen Sie, dass f ein Endomorphismus ist.
- 4.) Bestimmen Sie $[f]_{\mathcal{B}_1,\mathcal{B}_2}$
- 5.) Sei $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Bestimmen Sie den Koordinatenvektor $\Phi_{\mathcal{B}_1}(A)$ von A bzgl. \mathcal{B}_1 .
- 6.) Rechnen Sie nach, dass $\Phi_{\mathcal{B}_2}(f(A)) = [f]_{\mathcal{B}_1,\mathcal{B}_2}\Phi_{\mathcal{B}_1}(A)$ gilt.

4. Aufgabe

Sei $U \subseteq \mathrm{Abb}(\mathbb{R},\mathbb{R})$ ein Unterraum der Abbildungen von \mathbb{R} nach \mathbb{R} , so dass die Differentiation

$$d: U \to U, \quad \psi \mapsto \psi',$$

wohldefiniert ist.

- 1.) Zeigen Sie, dass d eine lineare Abbildung ist.
- 2.) Bestimmen Sie eine darstellende Matrix von d für die Räume
 - * $U_1 = \text{span}\{\sin,\cos,\sin^2,\cos^2,\sin\cos\}$, wobei $\sin^2: \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x)\sin(x), \dots$
 - * $U_2 = \{ f \in \mathrm{Abb}(\mathbb{R}, \mathbb{R}) \mid \exists p \in \mathbb{R}[t]_{\leq 3} : f(x) = p(x) \, \forall x \in \mathbb{R} \}.$

Gesamtpunktzahl: 0