Technische Universität Berlin Fakultät II – Institut für Mathematik

SS 2014

Ausgabe: 20.05.2014

Abgabe: 27.05.2014

Dozent: Prof. Dr. M. Scheutzow Assistentin: M. Wilke Berenguer

5. Übungsblatt "Maß- und Integrationstheorie" Das Lebesgue-Integral und Konvergenzsätze

Gesamtpunktzahl: 10 Punkte

1. Hausaufgabe:

4 Punkte

Sei Ω eine überabzählbare Menge und sei \mathcal{F} das System aller abzählbaren oder coabzählbaren (d.h. das Komplement ist abzählbar) Teilmengen von Ω . Aus der Übung ist bekannt, dass es sich hierbei um eine σ -Algebra handelt.

(i) Zeigen Sie, dass eine numerische Funktion $f: \Omega \to \overline{\mathbb{R}}$ genau dann messbar ist, wenn sie auf einer (von der Funktion abhängigen) coabzählbaren Menge $A_f \in \mathcal{F}$ konstant ist.

Betrachten Sie die Abbildung $\mu : \mathcal{F} \to [0, \infty]$, die jedem abzählbaren $A \in \mathcal{F}$ den Wert 0 und jedem coabzählbaren $B \in \mathcal{F}$ den Wert ∞ zuordnet. Durch den ersten Vortrag in der vierten Übung ist Ihnen bekannt, dass es sich hierbei um ein Maß auf \mathcal{F} handelt.

(ii) Bestimmen Sie alle μ -integrierbaren Funktionen sowie deren Integrale.

2. Hausaufgabe:

4 Punkte

Es sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum und $f: \Omega \to [0, \infty]$ eine messbare Funktion. Nach Folgerung 5.12 wird durch

$$\nu(F) := \int_F f \, d\mu$$

ein Maß auf (Ω, \mathcal{F}) definiert. Beweisen Sie, dass für jede messbare Funktion $g: \Omega \to [0, \infty]$ die Identität gilt:

$$\int_{\Omega} g \, d\nu = \int_{\Omega} f g \, d\mu.$$

3. Hausaufgabe:

2 Punkte

Sei $f: \Omega \to \mathbb{R}$ eine $\mathcal{F} - \mathfrak{B}(\mathbb{R})$ -messbare Funktion auf einem Maßraum $(\Omega, \mathcal{F}, \mu)$ so, dass durch

$$\forall A \in \mathcal{F}: \qquad \nu(A) := \int_A f d\mu$$

ein Maß ν auf (Ω, \mathcal{F}) definiert wird. Beweisen Sie, dass dann $f \geq 0$ $\mu-f.$ ü. gilt.

4. Hausaufgabe:

Vortrag: 8 Minuten

Es seien E = [0,1] und λ das Lebesgue-Maß auf E. Durch $f_n(x) = ne^{-nx}$, n = 1, 2, ... ist auf E eine Folge nichtnegativer Funktionen definiert. Zeigen Sie, dass $(f_n)_{n \in \mathbb{N}}$ λ -f.ü. gegen eine Funktion f konvergiert, wobei

$$\int_{E} f \, d\lambda \neq \lim_{n \to \infty} \int_{E} f_n \, d\lambda$$

gilt. Weshalb ist hier der Lebesgue'sche Satz nicht anwendbar?

5. Hausaufgabe: Bemerkung 5.13

Vortrag: 12 Minuten

Beweisen Sie den 3. Teil von Bemerkung 5.13, d.h. zeigen Sie dass wenn μ σ -endlich ist, so ist f μ -fast-überall eindeutig bestimmt, d.h. aus

$$\int_A f \, d\mu = \int_A g \, d\mu \text{ für alle } A \in \mathcal{F},$$

folgt f=g μ -f.ü. Geben Sie weiterhin ein Beispiel dafür an, dass hier auf die σ -Endlichkeit von μ nicht verzichtet werden kann.