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Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

◮ find ”bestroutes from sk to tk for all demands k ∈ K
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Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

s2

t2

d2 = 85.3 cars/h

◮ find ”bestroutes from sk to tk for all demands k ∈ K
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Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

s3

t3

d3 = 234.2 cars/h

◮ find ”bestroutes from sk to tk for all demands k ∈ K
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Route Guidance: State of Technology

Route Guidance Systems...

... play an increasingly important role in today’s traffic:
◮ in-car navigation systems
◮ urban road pricing schemes / centralized traffic routing

Today’s systems use static data only:
◮ average travel times on road links
◮ locations / times of typical rush hour congestions
◮ locations of work zones

⇒ routes computed by static shortest path calculations
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Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised
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The Need for Intelligent Traffic Routing

Fact

Intelligent Route Guidance Systems need to take into account
the effects on travel times of their own route suggestions.

Ã Some global optimization scheme is needed!
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Two Definitions of Optimality

System Optimum

Sum of all travel times is minimal.

Problems (e.g. [Mahmassani and Peeta 1993]):

◮ “unfair”: drivers with same origin and destination may have
vastly different travel times

Ã drivers will not accept these route suggestions!
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Two Definitions of Optimality

User Equilibrium

No user can improve his travel time by individually changing his
route.

⇒ “natural” flow pattern of unguided traffic

Result:

◮ “fair”: drivers with same origin and destination have same
travel times

Problems:

◮ sum of all travel times possibly a multiple of the one in
system optimum (“price of anarchy”, e.g. [Roughgarden
and Tardos 2002])

◮ no indication about network performance (Braess paradox)
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The Braess Paradox
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d = {A;B}
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System Optimum with Fairness Constraints

Idea [Jahn, M öhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths
drivers would not accept:

◮ τp := travel time on path p in UE
◮ Tk := travel time on paths chosen by commodity k in UE

⇒ only use paths p with

τp ≤ ϕ ·Tk

◮ suggestion: ϕ = 1.02

⇒ drivers are suggested paths which they think are fair!
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Properties of the Constrained System Optimum

Results [Jahn, M öhring, Schulz, Stier-Moses 2005]

With appropriate ϕ , τ, solutions to CSO yield

◮ a lot more fairness than System Optimum
◮ travel time of 99% of all users at most 30% higher than on

fastest route.
◮ in SO: 50%

◮ much better system performance than User Equilibrium
◮ total travel time only 1

3 as far away from SO as UE

◮ better routes for most drivers
◮ 75% spend less travel time than in UE
◮ only 0.4% spend 10% more (SO: 5%)
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The CSO Problem

min-cost multi-commodity flow problem with convex objective
function and path constraints:

Minimize ∑
a∈A

la(xa)xa

subject to ∑
k∈K

zk
a = xa a ∈ A

∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P
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Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate
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Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate

◮ exponentially many paths in G
⇒ cannot deal with variables xp explicitly

Previous work [Jahn, Möhring, Schulz, Stier-Moses 2004]:
◮ solve CSO by variant of Frank-Wolfe convex combinations

algorithm and constrained shortest path calculations

⇒ runtime acceptable: instances with a few thousand nodes /
arcs / commodities take some minutes

◮ improvement needed for practical use
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A Different Approach

Idea

◮ define appropriate Lagrangian relaxation
◮ use cutting plane method to solve dual problem

◮ similar approach successfully applied to other
multi-commodity flow problems [Babonneau and Vial 2005]
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Lagrangian Relaxation for CSO

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

∑
k∈K

zk
a = xa a ∈ A
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Lagrangian Relaxation for CSO

◮ remaining constraints resemble those of
|K | constrained shortest path problems in zk

a
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Lagrangian Relaxation for CSO

◮ Lagrangian separable in x and z?
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Lagrangian Relaxation for CSO

◮ Lagrangian separable in x and z?

Minimize L(x ,u) : =

L1(x ,u)
︷ ︸︸ ︷

∑
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L2(z,u)
︷ ︸︸ ︷

∑
k∈K

∑
a∈A

ua ·z
k
a

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results



Lagrangian Relaxation for CSO

Ã Yes!

Minimize L(x ,u) : =
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Lagrangian Relaxation for CSO

◮ easier problem: analytical minimization in x ...
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Lagrangian Relaxation for CSO

◮ ...and |K | constrained shortest path problems in zk
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Analytic Center Cutting Plane Method

◮ approximation scheme for maximization of a concave
function over a convex set

◮ implementation by Babonneau, Vial et. al. at LogiLab,
University of Geneva

Two components:

◮ query point generator
◮ manages a localization set containing all optimal points
◮ selects query points which are tried for optimality

◮ oracle
◮ generates cutting planes to further bound the localization

set
◮ problem dependent!
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◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
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Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

Traffic Optimization Solving the CSO Problem Results



Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

MAX

Traffic Optimization Solving the CSO Problem Results



Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

3u

Traffic Optimization Solving the CSO Problem Results



Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

3u

Traffic Optimization Solving the CSO Problem Results



Illustration of an ACCPM Run

oracle query point generator

◮ localization set artificially bounded ⇒ compact
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Illustration of an ACCPM Run

u u

oracle query point generator

In each iteration, a query point is sent to the oracle,...
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Illustration of an ACCPM Run

u

f(u)

oracle query point generator

... the value and subgradient of θ are calculated...
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Illustration of an ACCPM Run

oracle query point generator

... to further bound the localization set.
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Illustration of an ACCPM Run

MAX

oracle query point generator

Then, the proximal analytic center is calculated...
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Illustration of an ACCPM Run

uu

oracle query point generator

... which defines the next query point.
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Illustration of an ACCPM Run

u

OPT

oracle query point generator

... until desired precision is achieved.
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Illustration of an ACCPM Run

u

STOP!

OPT

oracle query point generator

... until desired precision is achieved.
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There is much more inside ACCPM

Accelerating convergence:
◮ sophisticated parameters for dynamic weighting of cuts
◮ cut elimination techniques
◮ rules for updating the proximal reference point

Problem specific functionalities:
◮ multiple cuts per iteration
◮ active set strategies

...
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The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented
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Test Instances

Name |V | |A| |K |

Sioux Falls 24 76 528

Winnipeg 1052 2836 4344

Neukoelln 1890 4040 3166

Chicago Sketch 933 2950 83113

◮ all but Neukoelln from Transportation Network Problems
online database

◮ tested on Intel Pentium 4 2.8GHz with 1 GB RAM, SuSE
Linux

◮ optimality gap: 0.5%
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General Findings

◮ runtime of query point generator negligible
◮ almost all calculation time spent finding CSPs

◮ goal-directed approach slowest for free flow travel times
◮ time for preprocessing longer than resulting speed-up
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Overall Runtime

◮ total runtime: basic / bidirectional / goal-oriented
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◮ why does goal-oriented algorithm perform best?
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Effect of CSP Acceleration

◮ CSP-runtime over ACCPM iterations for Winnipeg
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◮ runtimes of basic and bidirectional algorithms increase!
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Explanation

◮ edge length for CSP calculations: dual variables u
◮ as we approach optimum, u approaches CSO travel times

⇒ in congested networks, direct paths become unattractive
⇒ basic labeling algorithm is deflected from target

Ã infeasible paths are explored first

◮ goal orientation dominates this effect
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Exploration of Nodes on Infeasible Paths

◮ potential labels violating length bounds for Winnipeg
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◮ number of these labels proportional to runtime
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Comparison with Partan

◮ number of iterations compared with Partan
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Summary

◮ constrained system optimum delivers equally good and fair
solutions for traffic optimization

◮ proximal-ACCPM can be used to solve a Lagrangian
relaxation of CSO

◮ algorithm outperforms previous approaches:

≈ 1
2 the runtime of Partan algorithm

◮ interesting relationship

dual variables

↔ level of congestion

↔ runtime of different CSP algorithms
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