
Traffic Flow Optimization
under Fairness Constraints

Combinatorial Optimization & Graph Algorithms (COGA)

Technische Universität Berlin

Traffic Optimization Solving the CSO Problem Results

Outline

1 Traffic Flow Optimization under Fairness Constraints
Motivation
The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem
Lagrangian Relaxation to Treat Non-Linearity
Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Results
Computational Study
Summary

Traffic Optimization Solving the CSO Problem Results

Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

◮ find ”bestroutes from sk to tk for all demands k ∈ K

Traffic Optimization Solving the CSO Problem Results

Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

s1

t1

d1 = 125.5 cars/h

◮ find ”bestroutes from sk to tk for all demands k ∈ K

Traffic Optimization Solving the CSO Problem Results

Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

s2

t2

d2 = 85.3 cars/h

◮ find ”bestroutes from sk to tk for all demands k ∈ K

Traffic Optimization Solving the CSO Problem Results

Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

s3

t3

d3 = 234.2 cars/h

◮ find ”bestroutes from sk to tk for all demands k ∈ K

Traffic Optimization Solving the CSO Problem Results

Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

◮ find ”bestroutes from sk to tk for all demands k ∈ K

Traffic Optimization Solving the CSO Problem Results

Route Guidance: Introduction

◮ given: sources sk , targets tk , demand rates dk for traffic
demands in a road network

◮ find ”bestroutes from sk to tk for all demands k ∈ K

Traffic Optimization Solving the CSO Problem Results

Route Guidance: State of Technology

Route Guidance Systems...

... play an increasingly important role in today’s traffic:
◮ in-car navigation systems
◮ urban road pricing schemes / centralized traffic routing

Today’s systems use static data only:
◮ average travel times on road links
◮ locations / times of typical rush hour congestions
◮ locations of work zones

⇒ routes computed by static shortest path calculations

Traffic Optimization Solving the CSO Problem Results

Route Guidance: State of Technology

Route Guidance Systems...

... play an increasingly important role in today’s traffic:
◮ in-car navigation systems
◮ urban road pricing schemes / centralized traffic routing

Today’s systems use static data only:
◮ average travel times on road links
◮ locations / times of typical rush hour congestions
◮ locations of work zones

⇒ routes computed by static shortest path calculations

Traffic Optimization Solving the CSO Problem Results

Route Guidance: State of Technology

Route Guidance Systems...

... play an increasingly important role in today’s traffic:
◮ in-car navigation systems
◮ urban road pricing schemes / centralized traffic routing

Today’s systems use static data only:
◮ average travel times on road links
◮ locations / times of typical rush hour congestions
◮ locations of work zones

⇒ routes computed by static shortest path calculations

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

Results of Widespread Static Route Guidance

Travelers with the same origin and destination receive the same
route suggestions:

◮ suggested routes often not the quickest
◮ drivers will not accept route suggestions

Ã benefits of route guidance strongly compromised

Traffic Optimization Solving the CSO Problem Results

The Need for Intelligent Traffic Routing

Fact

Intelligent Route Guidance Systems need to take into account
the effects on travel times of their own route suggestions.

Ã Some global optimization scheme is needed!

Traffic Optimization Solving the CSO Problem Results

The Need for Intelligent Traffic Routing

Fact

Intelligent Route Guidance Systems need to take into account
the effects on travel times of their own route suggestions.

Ã Some global optimization scheme is needed!

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

System Optimum

Sum of all travel times is minimal.

Problems (e.g. [Mahmassani and Peeta 1993]):

◮ “unfair”: drivers with same origin and destination may have
vastly different travel times

Ã drivers will not accept these route suggestions!

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

System Optimum

Sum of all travel times is minimal.

Problems (e.g. [Mahmassani and Peeta 1993]):

◮ “unfair”: drivers with same origin and destination may have
vastly different travel times

Ã drivers will not accept these route suggestions!

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

System Optimum

Sum of all travel times is minimal.

Problems (e.g. [Mahmassani and Peeta 1993]):

◮ “unfair”: drivers with same origin and destination may have
vastly different travel times

Ã drivers will not accept these route suggestions!

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

User Equilibrium

No user can improve his travel time by individually changing his
route.

⇒ “natural” flow pattern of unguided traffic

Result:

◮ “fair”: drivers with same origin and destination have same
travel times

Problems:

◮ sum of all travel times possibly a multiple of the one in
system optimum (“price of anarchy”, e.g. [Roughgarden
and Tardos 2002])

◮ no indication about network performance (Braess paradox)

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

User Equilibrium

No user can improve his travel time by individually changing his
route.

⇒ “natural” flow pattern of unguided traffic

Result:

◮ “fair”: drivers with same origin and destination have same
travel times

Problems:

◮ sum of all travel times possibly a multiple of the one in
system optimum (“price of anarchy”, e.g. [Roughgarden
and Tardos 2002])

◮ no indication about network performance (Braess paradox)

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

User Equilibrium

No user can improve his travel time by individually changing his
route.

⇒ “natural” flow pattern of unguided traffic

Result:

◮ “fair”: drivers with same origin and destination have same
travel times

Problems:

◮ sum of all travel times possibly a multiple of the one in
system optimum (“price of anarchy”, e.g. [Roughgarden
and Tardos 2002])

◮ no indication about network performance (Braess paradox)

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

User Equilibrium

No user can improve his travel time by individually changing his
route.

⇒ “natural” flow pattern of unguided traffic

Result:

◮ “fair”: drivers with same origin and destination have same
travel times

Problems:

◮ sum of all travel times possibly a multiple of the one in
system optimum (“price of anarchy”, e.g. [Roughgarden
and Tardos 2002])

◮ no indication about network performance (Braess paradox)

Traffic Optimization Solving the CSO Problem Results

Two Definitions of Optimality

User Equilibrium

No user can improve his travel time by individually changing his
route.

⇒ “natural” flow pattern of unguided traffic

Result:

◮ “fair”: drivers with same origin and destination have same
travel times

Problems:

◮ sum of all travel times possibly a multiple of the one in
system optimum (“price of anarchy”, e.g. [Roughgarden
and Tardos 2002])

◮ no indication about network performance (Braess paradox)

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

2xa

2xa5

5

d = {A;B}

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

d = {A;B}

2xa

2xa5

5

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

d = {A;B}

2xa

2xa5

5

τ(A) = τ(B) = 7

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

d = {A;B}

2xa

2xa

2xa

2xa5

5

5

5

0

τ(A) = τ(B) = 7

d = {A;B}

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

d = {A;B}

2xa

2xa

2xa

2xa5

5

5

5

0

τ(A) = τ(B) = 7

d = {A;B}

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

d = {A;B}

2xa

2xa

2xa

2xa5

5

5

5

0

τ(A) = τ(B) = 7

d = {A;B}

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

d = {A;B}

2xa

2xa

2xa

2xa5

5

5

5

0

τ(A) = τ(B) = 7

d = {A;B}

τ(A) = τ(B) = 8

Traffic Optimization Solving the CSO Problem Results

The Braess Paradox

d = {A;B}

2xa

2xa

2xa

2xa5

5

5

5

0

τ(A) = τ(B) = 7

d = {A;B}

τ(A) = τ(B) = 8> 7

Traffic Optimization Solving the CSO Problem Results

Outline

1 Traffic Flow Optimization under Fairness Constraints
Motivation
The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem
Lagrangian Relaxation to Treat Non-Linearity
Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Results
Computational Study
Summary

Traffic Optimization Solving the CSO Problem Results

System Optimum with Fairness Constraints

Idea [Jahn, M öhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths
drivers would not accept:

◮ τp := travel time on path p in UE
◮ Tk := travel time on paths chosen by commodity k in UE

⇒ only use paths p with

τp ≤ ϕ ·Tk

◮ suggestion: ϕ = 1.02

⇒ drivers are suggested paths which they think are fair!

Traffic Optimization Solving the CSO Problem Results

System Optimum with Fairness Constraints

Idea [Jahn, M öhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths
drivers would not accept:

◮ τp := travel time on path p in UE
◮ Tk := travel time on paths chosen by commodity k in UE

⇒ only use paths p with

τp ≤ ϕ ·Tk

◮ suggestion: ϕ = 1.02

⇒ drivers are suggested paths which they think are fair!

Traffic Optimization Solving the CSO Problem Results

System Optimum with Fairness Constraints

Idea [Jahn, M öhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths
drivers would not accept:

◮ τp := travel time on path p in UE
◮ Tk := travel time on paths chosen by commodity k in UE

⇒ only use paths p with

τp ≤ ϕ ·Tk

◮ suggestion: ϕ = 1.02

⇒ drivers are suggested paths which they think are fair!

Traffic Optimization Solving the CSO Problem Results

System Optimum with Fairness Constraints

Idea [Jahn, M öhring, Schulz, Stier-Moses 2005]

Minimize sum of all travel times, but restrict usage of paths
drivers would not accept:

◮ τp := travel time on path p in UE
◮ Tk := travel time on paths chosen by commodity k in UE

⇒ only use paths p with

τp ≤ ϕ ·Tk

◮ suggestion: ϕ = 1.02

⇒ drivers are suggested paths which they think are fair!

Traffic Optimization Solving the CSO Problem Results

Properties of the Constrained System Optimum

Results [Jahn, M öhring, Schulz, Stier-Moses 2005]

With appropriate ϕ , τ, solutions to CSO yield

◮ a lot more fairness than System Optimum
◮ travel time of 99% of all users at most 30% higher than on

fastest route.
◮ in SO: 50%

◮ much better system performance than User Equilibrium
◮ total travel time only 1

3 as far away from SO as UE

◮ better routes for most drivers
◮ 75% spend less travel time than in UE
◮ only 0.4% spend 10% more (SO: 5%)

Traffic Optimization Solving the CSO Problem Results

Properties of the Constrained System Optimum

Results [Jahn, M öhring, Schulz, Stier-Moses 2005]

With appropriate ϕ , τ, solutions to CSO yield

◮ a lot more fairness than System Optimum
◮ travel time of 99% of all users at most 30% higher than on

fastest route.
◮ in SO: 50%

◮ much better system performance than User Equilibrium
◮ total travel time only 1

3 as far away from SO as UE

◮ better routes for most drivers
◮ 75% spend less travel time than in UE
◮ only 0.4% spend 10% more (SO: 5%)

Traffic Optimization Solving the CSO Problem Results

Properties of the Constrained System Optimum

Results [Jahn, M öhring, Schulz, Stier-Moses 2005]

With appropriate ϕ , τ, solutions to CSO yield

◮ a lot more fairness than System Optimum
◮ travel time of 99% of all users at most 30% higher than on

fastest route.
◮ in SO: 50%

◮ much better system performance than User Equilibrium
◮ total travel time only 1

3 as far away from SO as UE

◮ better routes for most drivers
◮ 75% spend less travel time than in UE
◮ only 0.4% spend 10% more (SO: 5%)

Traffic Optimization Solving the CSO Problem Results

Properties of the Constrained System Optimum

Results [Jahn, M öhring, Schulz, Stier-Moses 2005]

With appropriate ϕ , τ, solutions to CSO yield

◮ a lot more fairness than System Optimum
◮ travel time of 99% of all users at most 30% higher than on

fastest route.
◮ in SO: 50%

◮ much better system performance than User Equilibrium
◮ total travel time only 1

3 as far away from SO as UE

◮ better routes for most drivers
◮ 75% spend less travel time than in UE
◮ only 0.4% spend 10% more (SO: 5%)

Traffic Optimization Solving the CSO Problem Results

The CSO Problem

min-cost multi-commodity flow problem with convex objective
function and path constraints:

Minimize ∑
a∈A

la(xa)xa

subject to ∑
k∈K

zk
a = xa a ∈ A

∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

The CSO Problem

min-cost multi-commodity flow problem with convex objective
function and path constraints:

Minimize ∑
a∈A

la(xa)xa

subject to ∑
k∈K

zk
a = xa a ∈ A

∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

The CSO Problem

min-cost multi-commodity flow problem with convex objective
function and path constraints:

Minimize ∑
a∈A

la(xa)xa

subject to ∑
k∈K

zk
a = xa a ∈ A

∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

The CSO Problem

min-cost multi-commodity flow problem with convex objective
function and path constraints:

Minimize ∑
a∈A

la(xa)xa

subject to ∑
k∈K

zk
a = xa a ∈ A

∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate

tr
av

el
 ti

m
e

traffic

Traffic Optimization Solving the CSO Problem Results

Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate

tr
av

el
 ti

m
e

traffic

free flow

Traffic Optimization Solving the CSO Problem Results

Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate

ca
pa

ci
ty

tr
av

el
 ti

m
e

traffic

free flow

Traffic Optimization Solving the CSO Problem Results

Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate

◮ exponentially many paths in G
⇒ cannot deal with variables xp explicitly

Previous work [Jahn, Möhring, Schulz, Stier-Moses 2004]:
◮ solve CSO by variant of Frank-Wolfe convex combinations

algorithm and constrained shortest path calculations

⇒ runtime acceptable: instances with a few thousand nodes /
arcs / commodities take some minutes

◮ improvement needed for practical use

Traffic Optimization Solving the CSO Problem Results

Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate

◮ exponentially many paths in G
⇒ cannot deal with variables xp explicitly

Previous work [Jahn, Möhring, Schulz, Stier-Moses 2004]:
◮ solve CSO by variant of Frank-Wolfe convex combinations

algorithm and constrained shortest path calculations

⇒ runtime acceptable: instances with a few thousand nodes /
arcs / commodities take some minutes

◮ improvement needed for practical use

Traffic Optimization Solving the CSO Problem Results

Mathematical Challenges

◮ CSO is non-linear: travel times vary with flow rate

◮ exponentially many paths in G
⇒ cannot deal with variables xp explicitly

Previous work [Jahn, Möhring, Schulz, Stier-Moses 2004]:
◮ solve CSO by variant of Frank-Wolfe convex combinations

algorithm and constrained shortest path calculations

⇒ runtime acceptable: instances with a few thousand nodes /
arcs / commodities take some minutes

◮ improvement needed for practical use

Traffic Optimization Solving the CSO Problem Results

A Different Approach

Idea

◮ define appropriate Lagrangian relaxation
◮ use cutting plane method to solve dual problem

◮ similar approach successfully applied to other
multi-commodity flow problems [Babonneau and Vial 2005]

Traffic Optimization Solving the CSO Problem Results

A Different Approach

Idea

◮ define appropriate Lagrangian relaxation
◮ use cutting plane method to solve dual problem

◮ similar approach successfully applied to other
multi-commodity flow problems [Babonneau and Vial 2005]

Traffic Optimization Solving the CSO Problem Results

A Different Approach

Idea

◮ define appropriate Lagrangian relaxation
◮ use cutting plane method to solve dual problem

◮ similar approach successfully applied to other
multi-commodity flow problems [Babonneau and Vial 2005]

Traffic Optimization Solving the CSO Problem Results

Outline

1 Traffic Flow Optimization under Fairness Constraints
Motivation
The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem
Lagrangian Relaxation to Treat Non-Linearity
Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Results
Computational Study
Summary

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

∑
k∈K

zk
a = xa a ∈ A

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ drop constraints coupling total and commodity flows

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

∑
k∈K

zk
a = xa a ∈ A

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ drop constraints coupling total and commodity flows

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ add penalty terms with multipliers uj to objective

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ add penalty terms with multipliers uj to objective

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa + ∑
a∈A

(

ua ·

(

∑
k∈K

zk
a −xa

))

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ remaining constraints resemble those of
|K | constrained shortest path problems in zk

a

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa + ∑
a∈A

(

ua ·

(

∑
k∈K

zk
a −xa

))

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ Lagrangian separable in x and z?

Minimize L(x ,u) : = ∑
a∈A

la(xa)xa + ∑
a∈A

(

ua ·

(

∑
k∈K

zk
a −xa

))

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ Lagrangian separable in x and z?

Minimize L(x ,u) : =

L1(x ,u)
︷ ︸︸ ︷

∑
a∈A

(la(xa)−ua) ·xa +

L2(z,u)
︷ ︸︸ ︷

∑
k∈K

∑
a∈A

ua ·z
k
a

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

Ã Yes!

Minimize L(x ,u) : =

L1(x ,u)
︷ ︸︸ ︷

∑
a∈A

(la(xa)−ua) ·xa +

L2(z,u)
︷ ︸︸ ︷

∑
k∈K

∑
a∈A

ua ·z
k
a

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ easier problem: analytical minimization in x ...

Minimize L(x ,u) : =

L1(x ,u)
︷ ︸︸ ︷

∑
a∈A

(la(xa)−ua) ·xa +

L2(z,u)
︷ ︸︸ ︷

∑
k∈K

∑
a∈A

ua ·z
k
a

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ ...and |K | constrained shortest path problems in zk

Minimize L(x ,u) : =

L1(x ,u)
︷ ︸︸ ︷

∑
a∈A

(la(xa)−ua) ·xa +

L2(z,u)
︷ ︸︸ ︷

∑
k∈K

∑
a∈A

ua ·z
k
a

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Lagrangian Relaxation for CSO

◮ up next: dual problem (maximize this minimum over u)

Minimize L(x ,u) : =

L1(x ,u)
︷ ︸︸ ︷

∑
a∈A

(la(xa)−ua) ·xa +

L2(z,u)
︷ ︸︸ ︷

∑
k∈K

∑
a∈A

ua ·z
k
a

subject to ∑
p∈Pk :a∈p

xp = zk
a a ∈ A

∑
p∈Pk

xp = dk k ∈ K

τp ≤ ϕTk p ∈ Pk : xp > 0; k ∈ K

xp ≥ 0 p ∈ P

Traffic Optimization Solving the CSO Problem Results

Outline

1 Traffic Flow Optimization under Fairness Constraints
Motivation
The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem
Lagrangian Relaxation to Treat Non-Linearity
Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Results
Computational Study
Summary

Traffic Optimization Solving the CSO Problem Results

Analytic Center Cutting Plane Method

◮ approximation scheme for maximization of a concave
function over a convex set

◮ implementation by Babonneau, Vial et. al. at LogiLab,
University of Geneva

Two components:

◮ query point generator
◮ manages a localization set containing all optimal points
◮ selects query points which are tried for optimality

◮ oracle
◮ generates cutting planes to further bound the localization

set
◮ problem dependent!

Traffic Optimization Solving the CSO Problem Results

Analytic Center Cutting Plane Method

◮ approximation scheme for maximization of a concave
function over a convex set

◮ implementation by Babonneau, Vial et. al. at LogiLab,
University of Geneva

Two components:

◮ query point generator
◮ manages a localization set containing all optimal points
◮ selects query points which are tried for optimality

◮ oracle
◮ generates cutting planes to further bound the localization

set
◮ problem dependent!

Traffic Optimization Solving the CSO Problem Results

Analytic Center Cutting Plane Method

◮ approximation scheme for maximization of a concave
function over a convex set

◮ implementation by Babonneau, Vial et. al. at LogiLab,
University of Geneva

Two components:

◮ query point generator
◮ manages a localization set containing all optimal points
◮ selects query points which are tried for optimality

◮ oracle
◮ generates cutting planes to further bound the localization

set
◮ problem dependent!

Traffic Optimization Solving the CSO Problem Results

Analytic Center Cutting Plane Method

◮ approximation scheme for maximization of a concave
function over a convex set

◮ implementation by Babonneau, Vial et. al. at LogiLab,
University of Geneva

Two components:

◮ query point generator
◮ manages a localization set containing all optimal points
◮ selects query points which are tried for optimality

◮ oracle
◮ generates cutting planes to further bound the localization

set
◮ problem dependent!

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

u1

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

u1

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

u1

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

u1 2u

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

u1 2u

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

u1 2u

Traffic Optimization Solving the CSO Problem Results

Oracle for CSO

◮ evaluate objective function Ã CSP calculations
◮ calculate subgradient at query point Ã easy
⇒ subgradients and best objective value define cutting planes

bounding the localization set

u1 2u

Traffic Optimization Solving the CSO Problem Results

Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

Traffic Optimization Solving the CSO Problem Results

Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

MAX

Traffic Optimization Solving the CSO Problem Results

Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

3u

Traffic Optimization Solving the CSO Problem Results

Query Points

◮ analytic center: maximum distances from cutting planes
◮ calculation by damped Newton method

◮ u-component is next query point

3u

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

oracle query point generator

◮ localization set artificially bounded ⇒ compact

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u u

oracle query point generator

In each iteration, a query point is sent to the oracle,...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u

f(u)

oracle query point generator

... the value and subgradient of θ are calculated...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u

f(u)

oracle query point generator

... which define cutting planes...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

oracle query point generator

... to further bound the localization set.

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

MAX

oracle query point generator

Then, the proximal analytic center is calculated...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

uu

oracle query point generator

... which defines the next query point.

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u

f(u)

oracle query point generator

Process is repeated...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u

f(u)

oracle query point generator

Process is repeated...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

oracle query point generator

Process is repeated...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

oracle query point generator

Process is repeated...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u u

oracle query point generator

Process is repeated...

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u

OPT

oracle query point generator

... until desired precision is achieved.

Traffic Optimization Solving the CSO Problem Results

Illustration of an ACCPM Run

u

STOP!

OPT

oracle query point generator

... until desired precision is achieved.

Traffic Optimization Solving the CSO Problem Results

There is much more inside ACCPM

Accelerating convergence:
◮ sophisticated parameters for dynamic weighting of cuts
◮ cut elimination techniques
◮ rules for updating the proximal reference point

Problem specific functionalities:
◮ multiple cuts per iteration
◮ active set strategies

...

Traffic Optimization Solving the CSO Problem Results

There is much more inside ACCPM

Accelerating convergence:
◮ sophisticated parameters for dynamic weighting of cuts
◮ cut elimination techniques
◮ rules for updating the proximal reference point

Problem specific functionalities:
◮ multiple cuts per iteration
◮ active set strategies

...

Traffic Optimization Solving the CSO Problem Results

There is much more inside ACCPM

Accelerating convergence:
◮ sophisticated parameters for dynamic weighting of cuts
◮ cut elimination techniques
◮ rules for updating the proximal reference point

Problem specific functionalities:
◮ multiple cuts per iteration
◮ active set strategies

...

Traffic Optimization Solving the CSO Problem Results

There is much more inside ACCPM

Accelerating convergence:
◮ sophisticated parameters for dynamic weighting of cuts
◮ cut elimination techniques
◮ rules for updating the proximal reference point

Problem specific functionalities:
◮ multiple cuts per iteration
◮ active set strategies

...

Traffic Optimization Solving the CSO Problem Results

There is much more inside ACCPM

Accelerating convergence:
◮ sophisticated parameters for dynamic weighting of cuts
◮ cut elimination techniques
◮ rules for updating the proximal reference point

Problem specific functionalities:
◮ multiple cuts per iteration
◮ active set strategies

...

Traffic Optimization Solving the CSO Problem Results

Outline

1 Traffic Flow Optimization under Fairness Constraints
Motivation
The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem
Lagrangian Relaxation to Treat Non-Linearity
Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Results
Computational Study
Summary

Traffic Optimization Solving the CSO Problem Results

The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented

Traffic Optimization Solving the CSO Problem Results

The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented

Traffic Optimization Solving the CSO Problem Results

The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented

Traffic Optimization Solving the CSO Problem Results

The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented

Traffic Optimization Solving the CSO Problem Results

The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented

Traffic Optimization Solving the CSO Problem Results

The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented

Traffic Optimization Solving the CSO Problem Results

The Algorithm

Algorithm

◮ define Lagrangian Relaxation of CSO

◮ use proximal ACCPM to solve Lagrangian dual problem
◮ oracle: solve CSP problems

⇒ primal lower bound
◮ query point generator: damped Newton method

◮ primal solution / upper bound through heuristic:
convex combination of paths from oracle

◮ stop when desired precision guaranteed

◮ different variants of labeling algorithm for CSP:
basic, bidirectional, goal-oriented

Traffic Optimization Solving the CSO Problem Results

Test Instances

Name |V | |A| |K |

Sioux Falls 24 76 528

Winnipeg 1052 2836 4344

Neukoelln 1890 4040 3166

Chicago Sketch 933 2950 83113

◮ all but Neukoelln from Transportation Network Problems
online database

◮ tested on Intel Pentium 4 2.8GHz with 1 GB RAM, SuSE
Linux

◮ optimality gap: 0.5%

Traffic Optimization Solving the CSO Problem Results

Test Instances

Name |V | |A| |K |

Sioux Falls 24 76 528

Winnipeg 1052 2836 4344

Neukoelln 1890 4040 3166

Chicago Sketch 933 2950 83113

◮ all but Neukoelln from Transportation Network Problems
online database

◮ tested on Intel Pentium 4 2.8GHz with 1 GB RAM, SuSE
Linux

◮ optimality gap: 0.5%

Traffic Optimization Solving the CSO Problem Results

Test Instances

Name |V | |A| |K |

Sioux Falls 24 76 528

Winnipeg 1052 2836 4344

Neukoelln 1890 4040 3166

Chicago Sketch 933 2950 83113

◮ all but Neukoelln from Transportation Network Problems
online database

◮ tested on Intel Pentium 4 2.8GHz with 1 GB RAM, SuSE
Linux

◮ optimality gap: 0.5%

Traffic Optimization Solving the CSO Problem Results

General Findings

◮ runtime of query point generator negligible
◮ almost all calculation time spent finding CSPs

◮ goal-directed approach slowest for free flow travel times
◮ time for preprocessing longer than resulting speed-up

Traffic Optimization Solving the CSO Problem Results

General Findings

◮ runtime of query point generator negligible
◮ almost all calculation time spent finding CSPs

◮ goal-directed approach slowest for free flow travel times
◮ time for preprocessing longer than resulting speed-up

Traffic Optimization Solving the CSO Problem Results

General Findings

◮ runtime of query point generator negligible
◮ almost all calculation time spent finding CSPs

◮ goal-directed approach slowest for free flow travel times
◮ time for preprocessing longer than resulting speed-up

0 2 4 6 8 10 12

goal−oriented

bidirectional

basic

Runtime of CSP Calculaltions (Free Flow) [s]

Winnipeg, φ=1,02

basic
bidirectional
preprocessing
goal−oriented

Traffic Optimization Solving the CSO Problem Results

General Findings

◮ runtime of query point generator negligible
◮ almost all calculation time spent finding CSPs

◮ goal-directed approach slowest for free flow travel times
◮ time for preprocessing longer than resulting speed-up

0 2 4 6 8 10 12

goal−oriented

bidirectional

basic

Runtime of CSP Calculaltions (Free Flow) [s]

Winnipeg, φ=1,02

basic
bidirectional
preprocessing
goal−oriented

Traffic Optimization Solving the CSO Problem Results

Overall Runtime

◮ total runtime: basic / bidirectional / goal-oriented

Chicago Sketch Neukoelln Winnipeg Sioux Falls
0

500

1000

1500

2000

2500

Instance

Ov
er

all
 R

un
tim

e [
s]

φ=1,02

basic
bidirectional
goal−oriented

◮ why does goal-oriented algorithm perform best?

Traffic Optimization Solving the CSO Problem Results

Overall Runtime

◮ total runtime: basic / bidirectional / goal-oriented

Chicago Sketch Neukoelln Winnipeg Sioux Falls
0

500

1000

1500

2000

2500

Instance

Ov
er

all
 R

un
tim

e [
s]

φ=1,02

basic
bidirectional
goal−oriented

◮ why does goal-oriented algorithm perform best?

Traffic Optimization Solving the CSO Problem Results

Effect of CSP Acceleration

◮ CSP-runtime over ACCPM iterations for Winnipeg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

ACCPM Iterations

Ru
nti

me
 of

 C
SP

 C
alc

ula
ltio

ns

Winnipeg, φ=1,02

basic
bidirectional
goal−oriented

◮ runtimes of basic and bidirectional algorithms increase!

Traffic Optimization Solving the CSO Problem Results

Effect of CSP Acceleration

◮ CSP-runtime over ACCPM iterations for Winnipeg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

ACCPM Iterations

Ru
nti

me
 of

 C
SP

 C
alc

ula
ltio

ns

Winnipeg, φ=1,02

basic
bidirectional
goal−oriented

◮ runtimes of basic and bidirectional algorithms increase!

Traffic Optimization Solving the CSO Problem Results

Explanation

◮ edge length for CSP calculations: dual variables u
◮ as we approach optimum, u approaches CSO travel times

⇒ in congested networks, direct paths become unattractive
⇒ basic labeling algorithm is deflected from target

Ã infeasible paths are explored first

◮ goal orientation dominates this effect

Traffic Optimization Solving the CSO Problem Results

Explanation

◮ edge length for CSP calculations: dual variables u
◮ as we approach optimum, u approaches CSO travel times

⇒ in congested networks, direct paths become unattractive
⇒ basic labeling algorithm is deflected from target

Ã infeasible paths are explored first

◮ goal orientation dominates this effect

Traffic Optimization Solving the CSO Problem Results

Explanation

◮ edge length for CSP calculations: dual variables u
◮ as we approach optimum, u approaches CSO travel times

⇒ in congested networks, direct paths become unattractive
⇒ basic labeling algorithm is deflected from target

Ã infeasible paths are explored first

◮ goal orientation dominates this effect

Traffic Optimization Solving the CSO Problem Results

Explanation

◮ edge length for CSP calculations: dual variables u
◮ as we approach optimum, u approaches CSO travel times

⇒ in congested networks, direct paths become unattractive
⇒ basic labeling algorithm is deflected from target

Ã infeasible paths are explored first

◮ goal orientation dominates this effect

Traffic Optimization Solving the CSO Problem Results

Explanation

◮ edge length for CSP calculations: dual variables u
◮ as we approach optimum, u approaches CSO travel times

⇒ in congested networks, direct paths become unattractive
⇒ basic labeling algorithm is deflected from target

Ã infeasible paths are explored first

◮ goal orientation dominates this effect

Traffic Optimization Solving the CSO Problem Results

Explanation

◮ edge length for CSP calculations: dual variables u
◮ as we approach optimum, u approaches CSO travel times

⇒ in congested networks, direct paths become unattractive
⇒ basic labeling algorithm is deflected from target

Ã infeasible paths are explored first

◮ goal orientation dominates this effect

Traffic Optimization Solving the CSO Problem Results

Exploration of Nodes on Infeasible Paths

◮ potential labels violating length bounds for Winnipeg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15
x 10

5

ACCPM Iterations

Nu
mb

er
 of

 In
fea

sib
le

Po
ten

tia
l L

ab
els

Winnipeg, φ=1,02

basic
bidirectional
goal−oriented

◮ number of these labels proportional to runtime

Traffic Optimization Solving the CSO Problem Results

Exploration of Nodes on Infeasible Paths

◮ potential labels violating length bounds for Winnipeg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15
x 10

5

ACCPM Iterations

Nu
mb

er
 of

 In
fea

sib
le

Po
ten

tia
l L

ab
els

Winnipeg, φ=1,02

basic
bidirectional
goal−oriented

◮ number of these labels proportional to runtime

Traffic Optimization Solving the CSO Problem Results

Comparison with Partan

◮ number of iterations compared with Partan

Sioux Falls Winnipeg Neukoelln Chicago Sketch
0

5

10

15

20

25

30

35

40

Instance

Ite
ra

tio
ns

φ=1,02

Partan
ACCPM

◮ ACCPM needs less iterations

Traffic Optimization Solving the CSO Problem Results

Comparison with Partan

◮ number of iterations compared with Partan

Sioux Falls Winnipeg Neukoelln Chicago Sketch
0

5

10

15

20

25

30

35

40

Instance

Ite
ra

tio
ns

φ=1,02

Partan
ACCPM

◮ ACCPM needs less iterations

Traffic Optimization Solving the CSO Problem Results

Comparison with Partan

◮ number of iterations compared with Partan

Sioux Falls Winnipeg Neukoelln Chicago Sketch
0

5

10

15

20

25

30

35

40

Instance

Ite
ra

tio
ns

φ=1,02

Partan
ACCPM

⇒ ACCPM needs less runtime

Traffic Optimization Solving the CSO Problem Results

Outline

1 Traffic Flow Optimization under Fairness Constraints
Motivation
The Constrained System Optimum Problem (CSO)

2 Solving the CSO Problem
Lagrangian Relaxation to Treat Non-Linearity
Proximal-ACCPM: An Interior Point Cutting Plane Method

3 Results
Computational Study
Summary

Traffic Optimization Solving the CSO Problem Results

Summary

◮ constrained system optimum delivers equally good and fair
solutions for traffic optimization

◮ proximal-ACCPM can be used to solve a Lagrangian
relaxation of CSO

◮ algorithm outperforms previous approaches:

≈ 1
2 the runtime of Partan algorithm

◮ interesting relationship

dual variables

↔ level of congestion

↔ runtime of different CSP algorithms

Traffic Optimization Solving the CSO Problem Results

Summary

◮ constrained system optimum delivers equally good and fair
solutions for traffic optimization

◮ proximal-ACCPM can be used to solve a Lagrangian
relaxation of CSO

◮ algorithm outperforms previous approaches:

≈ 1
2 the runtime of Partan algorithm

◮ interesting relationship

dual variables

↔ level of congestion

↔ runtime of different CSP algorithms

Traffic Optimization Solving the CSO Problem Results

Summary

◮ constrained system optimum delivers equally good and fair
solutions for traffic optimization

◮ proximal-ACCPM can be used to solve a Lagrangian
relaxation of CSO

◮ algorithm outperforms previous approaches:

≈ 1
2 the runtime of Partan algorithm

◮ interesting relationship

dual variables

↔ level of congestion

↔ runtime of different CSP algorithms

Traffic Optimization Solving the CSO Problem Results

Summary

◮ constrained system optimum delivers equally good and fair
solutions for traffic optimization

◮ proximal-ACCPM can be used to solve a Lagrangian
relaxation of CSO

◮ algorithm outperforms previous approaches:

≈ 1
2 the runtime of Partan algorithm

◮ interesting relationship

dual variables

↔ level of congestion

↔ runtime of different CSP algorithms

Traffic Optimization Solving the CSO Problem Results

	Traffic Flow Optimization under Fairness Constraints
	Motivation
	The Constrained System Optimum Problem (CSO)

	Solving the CSO Problem
	Lagrangian Relaxation to Treat Non-Linearity
	Proximal-ACCPM: An Interior Point Cutting Plane Method

	Results
	Computational Study
	Summary

