Modeling and solving a multimodal multicapacitated routing problem with scheduled services, time windows, and economies of scale

Luigi Moccia1,2, Jean-François Cordeau3, Gilbert Laporte4, Stefan Ropke4, and Maria Pia Valentini1

1ENEA - Ente per le Nuove tecnologie, l’Energia e l’Ambiente, Italy
2Università della Calabria, DEIS, Italy
3Canada Research Chair in Logistics and Transportation, Canada
4Canada Research Chair in Distribution Management, Canada

Seville, November 2007
Outline

1. Introduction
 - Problem characteristics
 - Relevant application related literature

2. Modelling Approach
 - Node-Arc based Formulation - F_1
 - Path based Formulation - F_2
 - Approximated Path based Formulation - F_2L
 - Valid inequalities

3. Algorithms and Computational results
 - Algorithms
 - Column generation details
 - Dynamic slope scaling, algorithm CGDSS
1. **Introduction**
 - Problem characteristics
 - Relevant application related literature

2. **Modelling Approach**
 - Node-Arc based Formulation - F_1
 - Path based Formulation - F_2
 - Approximated Path based Formulation - F_2L
 - Valid inequalities

3. **Algorithms and Computational results**
 - Algorithms
 - Column generation details
 - Dynamic slope scaling, algorithm CGDSS

Moccia et al. Multimodal Routing
Operational problem faced by freight forwarders in multimodal service network
- Consolidation of shipments: economies of scale
- Mix of flexible-time and scheduled transportation services
- Multiple time windows
- Multiple capacity constraints, e.g. volume, weight, train length, etc.
-
Operational problem faced by freight forwarders in multimodal service network

Consolidation of shipments: economies of scale

Mix of flexible-time and scheduled transportation services

Multiple time windows

Multiple capacity constraints, e.g. volume, weight, train length, etc.

.............
Problem characteristics

- Operational problem faced by freight forwarders in multimodal service network
- Consolidation of shipments: economies of scale
- **Mix of flexible-time and scheduled transportation services**
 - Multiple time windows
 - Multiple capacity constraints, e.g. volume, weight, train length, etc.

Moccia et al. Multimodal Routing
Problem characteristics

- Operational problem faced by freight forwarders in multimodal service network
- Consolidation of shipments: economies of scale
- Mix of flexible-time and scheduled transportation services
- Multiple time windows
- Multiple capacity constraints, e.g. volume, weight, train length, etc.
Problem characteristics

- Operational problem faced by freight forwarders in multimodal service network
- Consolidation of shipments: economies of scale
- Mix of flexible-time and scheduled transportation services
- Multiple time windows
- Multiple capacity constraints, e.g. volume, weight, train length, etc.
Problem characteristics

- Operational problem faced by freight forwarders in multimodal service network
- Consolidation of shipments: economies of scale
- Mix of flexible-time and scheduled transportation services
- Multiple time windows
- Multiple capacity constraints, e.g. volume, weight, train length, etc.

.........

Outline

1 Introduction
 - Problem characteristics
 - Relevant application related literature

2 Modelling Approach
 - Node-Arc based Formulation - F_1
 - Path based Formulation - F_2
 - Approximated Path based Formulation - F_2L
 - Valid inequalities

3 Algorithms and Computational results
 - Algorithms
 - Column generation details
 - Dynamic slope scaling, algorithm CGDSS

Moccia et al. Multimodal Routing
Modelling approach

- PLUS: TWs and PL.
Figure: Portion of the digraph representing the pickup and delivery time windows for a commodity
Figure: Example of exploding the physical network to the virtual one
We model the M++RP as a ODIMCFP with Time Windows (some of them collapsed).

This formulation employs binary variables $x_{ij}^k, \forall (i,j) \in A, \forall k \in K$, where $x_{ij}^k = 1$ if commodity k uses arc (i,j), $x_{ij}^k = 0$ otherwise.

$T_{ik}^k \in \mathbb{R}^+, \forall k \in K, \forall i \in I$, arrival time of commodity k at node i; $T_{ik}^k > 0$ if the node is visited by the commodity, otherwise $T_{ik}^k = 0$.
We model the M++RP as a ODIMCFP with Time Windows (some of them collapsed).

This formulation employs binary variables
\(x_{ij}^k, \forall (i, j) \in A, \forall k \in K \), where \(x_{ij}^k = 1 \) if commodity \(k \) uses arc \((i, j)\), \(x_{ij}^k = 0 \) otherwise.

\(T_i^k \in \mathbb{R}^+, \forall k \in K, \forall i \in I \), arrival time of commodity \(k \) at node \(i \); \(T_i^k > 0 \) if the node is visited by the commodity, otherwise \(T_i^k = 0 \).
We model the M++RP as a ODIMCFP with Time Windows (some of them collapsed).

This formulation employs binary variables \(x_{ij}^k, \forall (i,j) \in A, \forall k \in K \), where \(x_{ij}^k = 1 \) if commodity \(k \) uses arc \((i,j)\), \(x_{ij}^k = 0 \) otherwise.

\(T^k_i \in \mathbb{R}^+, \forall k \in K, \forall i \in I \), arrival time of commodity \(k \) at node \(i \); \(T^k_i > 0 \) if the node is visited by the commodity, otherwise \(T^k_i = 0 \).
\[
\sum_{j \in \Omega(k) \cup \{d^k\}} x^k_{o^k, j} = 1 \quad \forall k \in K, \quad (1)
\]
\[
\sum_{i \in \Gamma(k) \cup \{o^k\}} x^k_{i, d^k} = 1 \quad \forall k \in K, \quad (2)
\]
\[
\sum_{j \in \delta^+(i)} x^k_{i, j} - \sum_{j \in \delta^-(i)} x^k_{j, i} = 0 \quad \forall k \in K, \forall i \in I, \quad (3)
\]
\[
T^k_i + t^k_{ij} - T^k_j \leq (1 - x^k_{ij}) M^k_{ij} \quad \forall k \in K, \forall (i,j) \in A \cap I \times I, (4)
\]
\[
a^i \sum_{j \in \delta^+(i)} x^k_{i, j} \leq T^k_i \leq b^i \sum_{j \in \delta^+(i)} x^k_{i, j} \quad \forall k \in K, \forall i \in N^{tw}, \quad (5)
\]
\[
T^k_i = d^i \sum_{j \in \delta^+(i)} x^k_{i, j} \quad \forall k \in K, \forall i \in N^d, \quad (6)
\]
\[
\sum_{k \in K} w^k_{ij} x^k_{ij} \leq W_{ij} \quad \forall (i,j) \in A^{pl}. \quad (7)
\]
We use the so called *Multiple Choice Model* (MCM) to represent these PL functions. The MCM uses the following variables:

- \(l_{ij}^s \in \mathbb{R}^+ \), \(\forall (i, j) \in A_{pl} \), \(\forall s \in S_{ij} \), expresses the arc load on segment \(s \); if \(l_{ij}^s > 0 \) implies \(l_{ij}^u = 0 \), \(\forall u \in S_{ij} \setminus \{s\} \) and \(r_{ij}^{s-1} \leq l_{ij}^s \leq r_{ij}^s \);

- \(y_{ij}^s \in \{0, 1\} \), \(\forall (i, j) \in A_{pl} \), \(\forall s \in S_{ij} \), where \(y_{ij}^s = 1 \) if the arc load belongs to the segment \(s \) of the cost function \(g_{ij} \); otherwise \(y_{ij}^s = 0 \).
\[
\begin{align*}
\min & \sum_{k \in K} \sum_{(i,j) \in A^v} c_{ij}^k x_{ij}^k + \sum_{(i,j) \in A^{pl}} \sum_{s \in S_{ij}} (c_{ij}^s l_{ij}^s + f_{ij}^s y_{ij}^s) \\
\text{subject to } (1)-(7), \text{ and } & \\
\sum_{s \in S_{ij}} l_{ij}^s = \sum_{k \in K} q_{ij}^k x_{ij}^k & \forall (i,j) \in A^{pl}, \\
\frac{r_{ij}^{s-1}}{y_{ij}} \leq l_{ij}^s \leq r_{ij}^s y_{ij} & \forall (i,j) \in A^{pl}, \forall s \in S_{ij}, \\
\sum_{s \in S_{ij}} y_{ij}^s \leq 1 & \forall (i,j) \in A^{pl}.
\end{align*}
\]
Path based Formulation - \mathcal{F}_2

- We assume that for each commodity k is defined a path p between the origin and the destination nodes over the digraph G.
- Finding a minimum cost path p is a special case of resource constrained path problems.
- In this formulation we have binary decision variables z^k_p, where $z^k_p = 1$ if the commodity k is routed by the path p, and equals zero otherwise.
Path based Formulation - \mathcal{F}_2

- We assume that for each commodity k is defined a path p between the origin and the destination nodes over the digraph G.
- Finding a minimum cost path p is a special case of resource constrained path problems.
- In this formulation we have binary decision variables z^k_p, where $z^k_p = 1$ if the commodity k is routed by the path p, and equals zero otherwise.
We assume that for each commodity k is defined a path p between the origin and the destination nodes over the digraph G.

Finding a minimum cost path p is a special case of resource constrained path problems.

In this formulation we have binary decision variables z^k_p, where $z^k_p = 1$ if the commodity k is routed by the path p, and equals zero otherwise.
min \sum_{k \in K} \sum_{p \in P(k)} c^k_p z^k_p + \sum_{(i,j) \in A^p} \sum_{s \in S_{ij}} (c^s_{ij} l^s_{ij} + f^s_{ij} y^s_{ij}) \quad (12)

subject to (10), (11), and

\sum_{p \in P(k)} z^k_p = 1 \quad \forall k \in K, \quad (13)

\sum_{s \in S_{ij}} l^s_{ij} - \sum_{k \in K} \sum_{p \in P(k)} q^k_{ij} \phi^p_{ij} z^k_p = 0 \quad \forall (i, j) \in A^p, \quad (14)

\sum_{k \in K} \sum_{p \in P(k)} w^k_{ij} \phi^p_{ij} z^k_p \leq W_{ij} \quad \forall (i, j) \in A^p, \quad (15)

z^k_p \in \{0, 1\} \quad \forall k \in K, p \in P(k). \quad (16)
Approximated Path based Formulation - F_2L

A piecewise linear cost function will be approximated by its lower convex envelope when relaxing integrality constraints in a MILP formulation:

\[
\begin{align*}
\min & \sum_{k \in K} \sum_{p \in P(k)} \left(\sum_{(i,j) \in A^v} c_{ij}^k \psi_{ij}^p \right) + \sum_{(i,j) \in A^p} \alpha_{ij} q_{ij}^k \phi_{ij}^p z_k^p \\
\text{subject to} \ (13), \ (15), \ \text{and:} \\
& \sum_{k \in K} \sum_{p \in P(k)} q_{ij}^k \phi_{ij}^p z_k^p \leq r_{ij} \left| S_{ij} \right| \quad \forall (i, j) \in A^p
\end{align*}
\]
Valid inequalities

We adapt to formulations \mathcal{F}_1 and \mathcal{F}_2 the valid inequalities proposed by:

The *strong forcing constraints* state that when on a given arc no segment is chosen, the flow of each commodity is zero on that arc.

\[
x_{ij}^k \leq \sum_{s \in S_{ij}} y_{ij}^s \quad \forall k \in K, \forall (i, j) \in A^{pl} \quad (19)
\]
The extended forcing constraints require additional non-negative variables \(x_{ij}^{ks} \), and:

\[
x_{ij}^k = \sum_{s \in S_{ij}} x_{ij}^{ks} \quad \forall k \in K, \forall (i, j) \in A^{pl},
\]

(20)

\[
l_{ij}^s = \sum_{k \in K} q_{ij}^k x_{ij}^{ks} \quad \forall (i, j) \in A^{pl}, \forall s \in S_{ij},
\]

(21)

\[
x_{ij}^{ks} \leq y_{ij}^s \quad \forall (i, j) \in A^{pl}, \forall k \in K, \forall s \in S_{ij}.
\]

(22)

Then, we have formulations \(\mathcal{F}_1 S, \mathcal{F}_1 E, \mathcal{F}_2 S \) and \(\mathcal{F}_2 E \).
1 Introduction
 • Problem characteristics
 • Relevant application related literature

2 Modelling Approach
 • Node-Arc based Formulation - F_1
 • Path based Formulation - F_2
 • Approximated Path based Formulation - F_2L
 • Valid inequalities

3 Algorithms and Computational results
 • Algorithms
 • Column generation details
 • Dynamic slope scaling, algorithm CGDSS
Algorithms:

- the cplex implementation of formulations \mathcal{F}_1, \mathcal{F}_1S, \mathcal{F}_1E;
- CG1: the column generation that solves \mathcal{F}_2L and looks for a feasible integer solution with the cplex MILP solver out of the pool of generated columns, i.e. the Restricted Master Problem;
- CG2: the column generation for formulation \mathcal{F}_2 and the cplex MILP solver on the RMP;
- CGS: column and row generation for formulation \mathcal{F}_2S, plus the cplex MILP solver on the RMP.
Algorithms:

- the cplex implementation of formulations \mathcal{F}_1, \mathcal{F}_1S, \mathcal{F}_1E;
- CG1: the column generation that solves \mathcal{F}_2L and looks for a feasible integer solution with the cplex MILP solver out of the pool of generated columns, i.e. the Restricted Master Problem;
- CG2: the column generation for formulation \mathcal{F}_2 and the cplex MILP solver on the RMP;
- CGS: column and row generation for formulation \mathcal{F}_2S, plus the cplex MILP solver on the RMP.
Algorithms:

- the cplex implementation of formulations \mathcal{F}_1, \mathcal{F}_1S, \mathcal{F}_1E;
- CG1: the column generation that solves \mathcal{F}_2L and looks for a feasible integer solution with the cplex MILP solver out of the pool of generated columns, i.e. the Restricted Master Problem;
- CG2: the column generation for formulation \mathcal{F}_2 and the cplex MILP solver on the RMP;
- CGS: column and row generation for formulation \mathcal{F}_2S, plus the cplex MILP solver on the RMP.
Algorithms:

- the cplex implementation of formulations F_1, F_1S, F_1E;
- CG1: the column generation that solves F_2L and looks for a feasible integer solution with the cplex MILP solver out of the pool of generated columns, i.e. the Restricted Master Problem;
- CG2: the column generation for formulation F_2 and the cplex MILP solver on the RMP;
- CGS: column and row generation for formulation F_2S, plus the cplex MILP solver on the RMP.
The pricing phase must solve for each commodity a Shortest Path Problem with Time Windows and Timetables (SPPTWT).

Thanks to our representation of timetables as collapsed time windows, the SPPTWT is treatable with any SPPTTW algorithm.

The pricing phase must solve for each commodity a *Shortest Path Problem with Time Windows and Timetables (SPPTWT)*.

Thanks to our representation of timetables as collapsed time windows, the SPPTWT is treatable with any SPPTW algorithm.

The pricing phase must solve for each commodity a *Shortest Path Problem with Time Windows and Timetables* (SPPTWT).

Thanks to our representation of timetables as collapsed time windows, the SPPTWT is treatable with any SPPTW algorithm.

Test instances

Realistic instance
- 122 shipments from 10 factories to 10 regional distribution centers (from North to South Italy), two weeks time horizon, 28 block trains available;

Smaller test instances
- subsets of real size instance with \bar{k} equal to 10, 30, 60.
Test instances

Realistic instance

- 122 shipments from 10 factories to 10 regional distribution centers (from North to South Italy), two weeks time horizon, 28 block trains available;
- resulting graph: $|N| = 1507$, $|A| = 4900$, $|A^{pl}| = 2094$.

Smaller test instances

subsets of real size instance with \bar{k} equal to 10, 30, 60.
CG1 Upper bound quality - part I

<table>
<thead>
<tr>
<th>Sol.</th>
<th>Value</th>
<th>Time (min.)</th>
<th>Sol.</th>
<th>Value</th>
<th>Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-10-01</td>
<td>100.0</td>
<td>247</td>
<td>i-10-01</td>
<td>100.0</td>
<td>0.2</td>
</tr>
<tr>
<td>i-10-02</td>
<td>100.0</td>
<td>247</td>
<td>i-10-02</td>
<td>100.0</td>
<td>0.1</td>
</tr>
<tr>
<td>i-10-03</td>
<td>100.0</td>
<td>247</td>
<td>i-10-03</td>
<td>100.0</td>
<td>0.5</td>
</tr>
<tr>
<td>i-30-01</td>
<td>136.3</td>
<td>247</td>
<td>i-30-01</td>
<td>100.0</td>
<td>0.2</td>
</tr>
<tr>
<td>i-30-02</td>
<td>101.9</td>
<td>247</td>
<td>i-30-02</td>
<td>100.0</td>
<td>0.1</td>
</tr>
<tr>
<td>i-30-03</td>
<td>100.0</td>
<td>247</td>
<td>i-30-03</td>
<td>100.0</td>
<td>10</td>
</tr>
<tr>
<td>i-60-01</td>
<td>113.6</td>
<td>247</td>
<td>i-60-01</td>
<td>100.0</td>
<td>30</td>
</tr>
<tr>
<td>i-60-02</td>
<td>108.4</td>
<td>247</td>
<td>i-60-02</td>
<td>100.0</td>
<td>30</td>
</tr>
<tr>
<td>i-60-03</td>
<td>100.3</td>
<td>247</td>
<td>i-60-03</td>
<td>100.0</td>
<td>30</td>
</tr>
<tr>
<td>i-122-01</td>
<td>110.0</td>
<td>600</td>
<td>i-122-01</td>
<td>100.0</td>
<td>30</td>
</tr>
<tr>
<td>Average</td>
<td>107.1</td>
<td></td>
<td>Average</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
CG1 Upper bound quality - part II

“best LB” (days of computation!) by F_1, F_1S, F_1E, and CGS

<table>
<thead>
<tr>
<th></th>
<th>CG1/best LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-10-01</td>
<td>109.4</td>
</tr>
<tr>
<td>i-10-02</td>
<td>100.0</td>
</tr>
<tr>
<td>i-10-03</td>
<td>100.0</td>
</tr>
<tr>
<td>i-30-01</td>
<td>109.7</td>
</tr>
<tr>
<td>i-30-02</td>
<td>106.1</td>
</tr>
<tr>
<td>i-30-03</td>
<td>100.1</td>
</tr>
<tr>
<td>i-60-01</td>
<td>108.0</td>
</tr>
<tr>
<td>i-60-02</td>
<td>108.4</td>
</tr>
<tr>
<td>i-60-03</td>
<td>100.9</td>
</tr>
<tr>
<td>i-122-01</td>
<td>105.9</td>
</tr>
<tr>
<td>average</td>
<td>104.9</td>
</tr>
</tbody>
</table>
Other comp. results

- $\mathcal{F}_1 E$ hits memory availability too early ($\bar{k} = 60$);
- \mathcal{F}_1 vs. $\mathcal{F}_1 S$: lighter the better (in average);
- CGS useful to obtain better LBs, not competitive with CG1 for UBs;
- CGS more effective than $\mathcal{F}_1 S$ on medium-large instances.
$\mathcal{F}_1 E$ hits memory availability too early ($\bar{k} = 60$);

\mathcal{F}_1 vs. $\mathcal{F}_1 S$: lighter the better (in average);

CGS useful to obtain better LBs, not competitive with CG1 for UBs;

CGS more effective than $\mathcal{F}_1 S$ on medium-large instances.
Other comp. results

- F_1E hits memory availability too early ($\bar{k} = 60$);
- F_1 vs. F_1S: lighter the better (in average);
- CGS useful to obtain better LBs, not competitive with CG1 for UBs;
- CGS more effective than F_1S on medium-large instances.
Other comp. results

- $\mathcal{F}_1 E$ hits memory availability too early ($\bar{k} = 60$);
- \mathcal{F}_1 vs. $\mathcal{F}_1 S$: lighter the better (in average);
- CGS useful to obtain better LBs, not competitive with CG1 for UBs;
- CGS more effective than $\mathcal{F}_1 S$ on medium-large instances.
F_2L merit

<table>
<thead>
<tr>
<th>Instance</th>
<th>F_1 (sec.)</th>
<th>CG1 (sec.)</th>
<th>CG2 (sec.)</th>
<th>CG1/F_1</th>
<th>CG2/F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-10-01</td>
<td>0.07</td>
<td>0.08</td>
<td>0.65</td>
<td>1.1</td>
<td>9.3</td>
</tr>
<tr>
<td>i-10-02</td>
<td>0.09</td>
<td>0.14</td>
<td>1.00</td>
<td>1.6</td>
<td>11.1</td>
</tr>
<tr>
<td>i-10-03</td>
<td>0.11</td>
<td>0.22</td>
<td>2.02</td>
<td>2.0</td>
<td>18.4</td>
</tr>
<tr>
<td>i-30-01</td>
<td>0.13</td>
<td>0.58</td>
<td>1.72</td>
<td>4.5</td>
<td>13.2</td>
</tr>
<tr>
<td>i-30-02</td>
<td>0.13</td>
<td>0.68</td>
<td>1.98</td>
<td>5.2</td>
<td>15.2</td>
</tr>
<tr>
<td>i-30-03</td>
<td>0.16</td>
<td>2.16</td>
<td>3.51</td>
<td>13.5</td>
<td>21.9</td>
</tr>
<tr>
<td>i-60-01</td>
<td>0.19</td>
<td>1.82</td>
<td>5.46</td>
<td>9.6</td>
<td>28.7</td>
</tr>
<tr>
<td>i-60-02</td>
<td>0.26</td>
<td>2.27</td>
<td>6.29</td>
<td>8.7</td>
<td>24.2</td>
</tr>
<tr>
<td>i-60-03</td>
<td>0.60</td>
<td>7.63</td>
<td>16.23</td>
<td>12.7</td>
<td>27.1</td>
</tr>
<tr>
<td>i-122-01</td>
<td>1.86</td>
<td>8.08</td>
<td>23.81</td>
<td>4.3</td>
<td>12.8</td>
</tr>
<tr>
<td>average</td>
<td>6.3</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CG1 Lower Bound quality

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{F}_1</th>
<th>CG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-10-01</td>
<td>102</td>
<td>100</td>
</tr>
<tr>
<td>i-10-02</td>
<td>113</td>
<td>100</td>
</tr>
<tr>
<td>i-10-03</td>
<td>124</td>
<td>100</td>
</tr>
<tr>
<td>i-30-01</td>
<td>100</td>
<td>112</td>
</tr>
<tr>
<td>i-30-02</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>i-30-03</td>
<td>112</td>
<td>100</td>
</tr>
<tr>
<td>i-60-01</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>i-60-02</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>i-60-03</td>
<td>118</td>
<td>100</td>
</tr>
<tr>
<td>i-122-01</td>
<td>100</td>
<td>108</td>
</tr>
<tr>
<td>average</td>
<td>107</td>
<td>102</td>
</tr>
</tbody>
</table>
CGDSS solves \mathcal{F}_2L as CG1, then creates perturbed new problems by a dynamic slope scaling concept to enlarge the column pool. Finally, it starts the cplex MILP solver.

Figure: Example of slope updating between iteration zero and one
CGDSS is able to obtain a new better upper bound on the large i-122-01 instance (-0.2%).
Future work

- Branch-and-price
- New problem variants: time related node costs...
Future work

- Branch-and-price
- New problem variants: time related node costs....