Gröbner bases over free associative algebras: Algorithmics, Implementation, and Applications I

Viktor Levandovskyy and Team

Universität Kassel, Germany and American University Kyiv, Ukraine
Dec 6, 2023, TU Berlin

U N I K A S S E L
 V E R S I T 'A' T

American University Kyiv

Taxonomy of associative structures

Notations: $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ is the finite set of variables and K is a field.
Semigroup = associative magma
Monoid = semigroup with the neutral element (\llcorner or ϵ or 1)
Group $=$ monoid, each element of which is invertible Ring (with 1) ($R,+, 0, \star, 1$):

- $(R,+, 0)$ is an abelian group with the neutral element 0
- $(R, \star, 1)$ is a monoid with the neutral element 1
- \star is both left and right distributive over + , i.e.

$$
a \star(b+c)=a \star b+a \star c \text { and }(b+c) \star a=b \star a+c \star a
$$

If R is a commutative ring, then an associative R-algebra is a ring and an R-module, such that $\forall r \in R \forall a, b \in A$ one has

$$
r \star(a \star b)=(r \star a) \star b=a \star(r \star b)=(a \star b) \star r .
$$

Free structures and some taxonomy

The free monoid on $X=\left\{x_{1}, \ldots, x_{n}\right\}$:
denoted by $\langle X\rangle$
carrier set: all finite words (including the empty word as the neutral element) in the alphabet X
multiplication: \star is the concatenation $x_{2} \star x_{1}=x_{2} x_{1} \neq x_{1} x_{2}=x_{1} \star x_{2}$. divisibility: a partial relation on the set of words by string inclusion.

The free group on $X=\left\{x_{1}, \ldots, x_{n}\right\}$:
denoted by $\langle X\rangle$ (arrgh, same as monoid!)
carrier set: all finite reduced words (including the empty word as the neutral element) in the alphabet $X \cup X^{\prime}$, where $X^{\prime}=\left\{x_{1}^{-1}, \ldots, x_{n}^{-1}\right\}$ multiplication: \star is the concatenation taking inverses into account: $x_{2} \star x_{1}=x_{2} x_{1}$ but $x_{1} \star x_{1}^{-1}=x_{1}^{-1} \star x_{1}=1$. divisibility: a partial relation on the set of reduced words by string inclusion.

Towards FPA

Over an arbitrary ring R and a monoid M we can create

The monoid algebra

denoted by RM
carrier set: finite sums $\sum r_{i} m_{i}$, where $r_{i} \in R \backslash\{0\}$ and $m_{i} \in M$ multiplication: $\left(\sum r_{i} m_{i}\right) \star\left(\sum r_{j}^{\prime} m_{j}^{\prime}\right):=\sum\left(r_{i} r_{j}^{\prime}\right)\left(m_{i} m_{j}^{\prime}\right)$
$\mathbf{K}\langle\mathbf{X}\rangle$, for X as above and a field K is called the free associative algebra over $K=$ the tensor algebra $T V$ of the vector space $V=K \oplus \bigoplus K x_{i}$.

A K-algebra A is a finitely presented associative algebra (FPA), if $\exists n \in \mathbb{N}_{0}$ such that A is a homomorphic image of a free associative algebra over K on the set of n variables, i.e. $A=K\langle X\rangle / I$, where $I \subsetneq K\langle X\rangle$ is a two-sided ideal.

Free group is a finitely related (and thus not free!) monoid: generators $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ and relations $\left\{x_{i} y_{i}=1, y_{i} x_{i}=1 \mid 1 \leq i \leq n\right\}$

Graded structures

A ring R is called ($\mathbb{N}_{0^{-}}$)graded if there exist additive subgroups $R_{i} \subseteq R, i \in \mathbb{N}_{0}$, such that

- $R=\bigoplus_{i \in \mathbb{N}} R_{i}$
- $\forall k, j \in \mathbb{N}_{0} R_{k} \cdot R_{j} \subseteq R_{k+j}$, that is $\forall r \in R_{k}, \forall s \in R_{j}$ one has $r s \in R_{k+j}$.
$p \in R_{i}$ is called a homogeneous (or a graded) element of degree i.

Properties

$R_{0} \subseteq R$ is a subring, R_{i} are R_{0}-bimodules.
We are interested in nontrivial gradings, i. e. those for which $R \neq R_{0}$. In general, a grading can be provided by an additive semigroup, most often $\mathbb{N}_{0}^{n}, \mathbb{Z}, \mathbb{Z}^{n}$.

Graded structures

An ideal $I \subset R$ in a graded ring R is called graded if $I=\bigoplus_{i} I_{i}$, where $I_{i}=I \cap R_{i}$.

Properties

- If I is graded, then $\forall p \in I p=p_{1}+\ldots+p_{k}, p_{i} \in R_{i} \Rightarrow p_{i} \in I$.
- A graded ideal possesses a generating set, consisting of graded elements.
- Any monomial ideal is graded.
- For a graded ideal $I \subset R$ in a graded ring R, the factor ring R / I has an induced grading.

Graded modules form a very pleasant subcategory of the category of modules (with morphisms being graded morphisms, i.e. those, which respect the grading).

Some properties of $K\langle X\rangle$

$K\left\langle x_{1}\right\rangle=K\left[x_{1}\right]$ is commutative, so let $n \geq 2$.
$\circ A:=K\langle X\rangle$ is naturally \mathbb{N}_{0}-graded: set $\operatorname{deg}\left(x_{i}\right)=1$, then $A_{0}=K$ and for $i \geq 1 A_{i}=\oplus\{K w: w \in X, \operatorname{deg}(w)=i\}$.

- The number of variables of $K\langle X\rangle$ does not lead to the nice notion of rank: for $n \geq 3$ there exist embeddings of $K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ into $K\left\langle x_{1}, x_{2}\right\rangle$.
- $K\langle X\rangle$ is a domain (there are no zero-divisors).
- $K\langle X\rangle$ is neither left nor right nor weak Noetherian: there exist infinite strictly ascending chains of ideals; we have to admit infinite generating sets.

Gröbner Bases Q\&A

What? Gröbner basis of an ideal $I \subset K\langle X\rangle$ is a generating set for I, possessing many nice properties.
Why? Knowing a Gröbner basis of I, we can answer the following questions about $K\langle X\rangle / I$:

- is $K\langle X\rangle / I=0$? This happens iff $1 \in I$ iff $1 \in G B(I)$
- is $K\langle X\rangle / I$ finite dimensional algebra? Compute a K-basis of such.
- for $p \in K\langle X\rangle$, is $p \in I$? Ideal membership problem.
- is $K\langle X\rangle / I$ commutative algebra?
* is $K\langle X\rangle / I$ left or right or weak Noetherian? Is it prime or semi-prime?
\star what are the values of various ring-theoretic dimensions of $K\langle X\rangle / I$?
- and many other... (\star means that the answer is not always complete)

How to compute GB? The contents of next lectures and exercises.

The giants' shoulders

A Gröbner bases theory for (free) assoc. algebras builds on top of
G. M. Bergman, "The diamond lemma for ring theory", Adv. in Math., 29 (1978), 178-218.

However, L. A. Bokut in "Imbeddings into simple associative algebras", Algebra Logika, 15 (1976), 117-142 has already specialized Gröbner-Shirshov bases for the associative case.

More systematic approach to Gröbner bases (also for free algebras) was performed by Teo Mora in
"Seven variations on standard bases", 1988, preprint
"Groebner bases in non-commutative algebras", Proc. ISSAC'88 (1989), 150-161

Now, we enter the realm of Gröbner bases.

- $A=K\langle X\rangle$, the free associative algebra over K.
- $M=\langle X\rangle$ is the free monoid (with 1 as the empty word)

A monomial ordering \prec on A is a total ordering on M which is compatible with multiplication. Precisely one has:
(i) either $u \prec v$ or $v \prec u$, for any $u, v \in M, u \neq v$;
(ii) if $u \prec v$ then $w u \prec w v$ and $u w \prec v w$, for all $u, v, w \in M$;

Moreover, if every non-empty subset of M has a minimal element wrt \prec (that is, \prec is well-founded), one says that \prec is a monomial well-ordering.

Remark

By Higman's lemma, any total ordering on M (even if the number of variables of the polynomial algebra A is infinite), which is compatible with multiplication and such that $x_{n} \succ \ldots x_{1} \succ 1$ holds, is a monomial well-ordering.

(Monomial) orderings

Let $\langle X\rangle=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. We always impose a linear preordering $x_{1}>x_{2}>\ldots>x_{n}>1$ first.

- For $\mu=x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}}$ and $\nu=x_{\ell_{1}} x_{\ell_{2}} \cdots x_{\ell_{\bar{k}}}$ from $\langle X\rangle$

$$
\begin{aligned}
\mu<_{\text {llex }} \nu \Longleftrightarrow & \exists 1 \leq i \leq \min \{k, \tilde{k}\}: x_{j_{w}}=x_{\ell_{w}} \forall w<i \wedge x_{j_{i}}<x_{\ell_{i}} \\
& \text { or } \nu=\mu \tilde{\nu} \quad \text { for some } \tilde{\nu} \in\langle X\rangle .
\end{aligned}
$$

This is called the left lexicographical ordering.
Analogously one can define the right lexicographical ordering rlex.
Houston, we've got a problem!
Neither llex nor rlex are monomial orderings.
Hint: $x_{2} x_{1}<l_{l e x} x_{1}$, but this is a contradiction (why?) to $1<x_{2}$.

Monomial degree orderings

- Take μ, ν as before. We define:

$$
\mu<_{\operatorname{degllex}} \nu \quad \Longleftrightarrow\left\{\begin{array}{l}
k<\tilde{k} \quad, \text { or } \\
k=\tilde{k} \text { and } \mu<_{\| \mathrm{lex}} \nu
\end{array}\right.
$$

This is called the degree (left) lexicographical ordering.

- Take $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{R}_{+}^{n}$ and again let $\mu, \nu \in\langle X\rangle$ as before.

$$
\mu<_{\omega} \nu \Longleftrightarrow\left\{\begin{array}{l}
\sum_{i=1}^{k} \omega_{j_{i}}<\sum_{i=1}^{\tilde{k}} \omega_{l_{i}} \quad \text { or } \\
\sum_{i=1}^{k} \omega_{j_{i}}=\sum_{i=1}^{\tilde{k}} \omega_{l_{i}} \text { and } \mu \ll_{\text {llex }} \nu
\end{array}\right.
$$

This is called the weighted degree left lexicographical ordering with weight vector ω.
Both degllex and ω-degllex are monomial orderings.

Notations

- $\operatorname{lm}(f) \in\langle X\rangle$ the leading (greatest) monomial of $f \in K\langle X\rangle \backslash\{0\}$
- $\operatorname{lc}(f) \in K \backslash\{0\}$ the leading coefficient of $f \in K\langle X\rangle \backslash\{0\}$
- $\operatorname{lm}(G)=\{\operatorname{lm}(g) \mid g \in G \backslash\{0\}\}$ with $\emptyset \neq G \subset K\langle X\rangle$
- $\operatorname{LM}(G)$ the two-sided ideal generated by $\operatorname{lm}(G)$

Definition

Let I be a left (right, two-sided) ideal of $K\langle X\rangle$ and $G \subset I$.
If $\operatorname{LM}(G)=\mathrm{LM}(I)$ as left (right, two-sided) monoid ideals, then G is called a left (right, two-sided) Gröbner basis of I. In other words, for all $f \in I \backslash\{0\} \quad \exists g \in G \backslash\{0\}$ and Left GB: $\exists w_{L} \in\langle X\rangle: \operatorname{lm}(f)=w_{L} \cdot \operatorname{lm}(g)$.

Two-sided GB: $\exists w_{L}, w_{R} \in\langle X\rangle: \operatorname{lm}(f)=w_{L} \cdot \operatorname{lm}(g) \cdot w_{R}$.

Gröbner representation

Definition

Let $G \subset K\langle X\rangle, f \in K\langle X\rangle$. We say that f has a two-sided Gröbner representation with respect to G if $f=0$ or there is a finite index set I, $\lambda_{i}, \rho_{i} \in K\langle X\rangle, g_{i} \in G$ such that

$$
f=\sum_{i \in I} \lambda_{i} g_{i} \rho_{i}
$$

with either $\lambda_{i} g_{i} \rho_{i}=0$ or $\operatorname{lm}(f) \succeq \operatorname{lm}\left(\lambda_{i}\right) \operatorname{lm}\left(g_{i}\right) \operatorname{lm}\left(\rho_{i}\right)$ holds.

Lemma

Let \prec be a well ordering. Then G is a Gröbner basis (of $\langle G\rangle$) if and only if every $f \in\langle G\rangle \backslash\{0\}$ has a Gröbner representation.

Intuition: given an ordering and a generating set G of an ideal, we want to produce new polynomials, which do not possess a Gröbner representation with respect to G, and enlarge G by those.

Divisibility and overlaps

Let $u, w \in\langle X\rangle$ be two monomials.

- We say that u divides w (or w is divisible by u), if there exist $p, q \in\langle X\rangle$ such that $\mathbf{w}=p \cdot \mathbf{u} \cdot q$.
- If $w=p u$, then w is divisible by u from the left.
- The set G is called minimal, if $\forall g_{1}, g_{2} \in G$, $\operatorname{lm}\left(g_{1}\right)$ does not divide $\operatorname{lm}\left(g_{2}\right)$ and vice versa.

Two monomials $u, w \in\langle X\rangle$ have an overlap at a monomial o, if $w=o w^{\prime}$ and $u=u^{\prime} o$. We denote the overlapping by $u^{\prime} \cdot o \cdot w^{\prime}$. If $o=1$, the overlap is trivial.

Exercise: for a fixed $u, w \in\langle X\rangle$ there are finitely many overlaps (u, w, o_{i}). Observation: Working with left ideals, the only divisibility from the left can be achieved by proper submonomials.

Normal form

Let \mathcal{G} be the set of all finite and ordered subsets of $K\langle X\rangle$. A map NF : $K\langle X\rangle \times \mathcal{G} \rightarrow K\langle X\rangle,(f, G) \mapsto \mathrm{NF}(f \mid G)$ is called a (two-sided) normal form on $K\langle X\rangle$ if
(i) $\operatorname{NF}(0 \mid G)=0$,
(ii) $\operatorname{NF}(f \mid G) \neq 0 \Rightarrow \operatorname{lm}(\operatorname{NF}(f \mid G)) \notin L M(G)$, and
(iii) $f-\operatorname{NF}(f \mid G) \in\langle G\rangle$, for all $f \in K\langle X\rangle$ and $G \in \mathcal{G}$.

Let $f, g \in K\langle X\rangle$. Suppose that there are $p, q \in\langle X\rangle$ such that

- $\operatorname{lm}(f) q=p \operatorname{lm}(g)$,
- $\operatorname{lm}(f)$ does not divide p and $\operatorname{lm}(g)$ does not divide q.

Then the overlap polynomial (relation) of f, g by p, q is defined as

$$
o(f, g, p, q)=\frac{1}{\operatorname{lc}(f)} f q-\frac{1}{\operatorname{lc}(g)} p g .
$$

Division algorithm and Normal form

```
Algorithm NF
Input: f\inK\langle\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}\rangle,G\in\mathcal{G}\mathrm{ ;}
Output: h, a normal form of f}\mathrm{ with respect to G.
h:= f;
while ((h\not=0) and (Gh={g\inG: lm}(g)\mathrm{ divides }\operatorname{lm}(h)}\not=\emptyset))\mathrm{ do
choose any g}\in\mp@subsup{G}{h}{}\mathrm{ ;
compute }\mp@subsup{w}{L}{},\mp@subsup{w}{R}{}\in\langleX\rangle\mathrm{ such that }\operatorname{lm}(h)=\mp@subsup{w}{L}{}\cdot\operatorname{lm}(g)\cdot\mp@subsup{w}{R}{}\mathrm{ ;
h:=h-\frac{cc(h)}{lc(g)}\cdot\mp@subsup{w}{L}{}\cdotg\cdot\mp@subsup{w}{R}{};
return h.
```

Lemma
NF (h, G) always terminates. (Key: monomial ordering!)

A useful isomorphism and K-basis

Lemma

Let \prec be a well-ordering on $K\langle X\rangle$ and $G \subset K\langle X\rangle$ a Gröbner basis of $I=\langle G\rangle$. Then there is the following isomorphism of K-vector spaces

$$
K\langle X\rangle \cong K\langle X\rangle / \mathrm{LM}(I) \oplus I, \quad f \mapsto(\mathrm{NF}(f, G), f-\mathrm{NF}(f, G))
$$

Since G is a GB of $I, \operatorname{LM}(I)=\operatorname{LM}(G)$. Note, that $K\langle X\rangle / \operatorname{LM}(I)$ is a monomial algebra.

Corollary

- $K\langle X\rangle / \mathrm{LM}(I) \cong K\langle X\rangle / I$ as K-vector spaces
- $\{w \in\langle X\rangle: w \notin \mathrm{LM}(I)\}$ is the canonical (with respect to \prec) monomial K-basis of $K\langle X\rangle / I$.

Generalized Buchberger's Criterion

Theorem

Let \prec be a well-ordering on $K\langle X\rangle$ and $G \subset K\langle X\rangle$.
Then the following conditions are equivalent:
(1) G is a (two-sided) Gröbner basis of $\langle G\rangle$
(2) $\forall g_{1}, g_{2} \in G$, for every overlap polynomial holds

$$
\operatorname{NF}\left(o\left(g_{1}, g_{2}, p, q\right) \mid G\right)=0
$$

(3) $\forall g_{1}, g_{2} \in G$, every overlap polynomial $o\left(g_{1}, g_{2}, p, q\right)$ has a Gröbner representation with respect to G.

Note: infinite Gröbner bases exist (even monomial ones).

Procedure GroebnerBasis

Input: $G \in \mathcal{G}$.
Output: H, a (two-sided) Gröbner basis of $\langle G\rangle$.
$H:=G \backslash\{0\} ;$
$P:=\{(f, g) \mid f, g \in H\} ;($ note: (f, g) and (g, f) are different pairs!)
while $P \neq \emptyset$ do
choose $(f, g) \in P$;
$P:=P \backslash\{(f, g)\} ;$
$O:=\{o(f, g, p, q)\} ;$ (the set of all overlap polynomials between f, g)
for $o \in O$ do
$h:=\mathrm{NF}(o, H)$;
if $h \neq 0$ then

$$
\begin{aligned}
& H:=H \cup\{h\} ; \\
& P:=P \cup\{(f, h) \mid f \in H\} ;(\text { note: }(h, h) \text { are added as well })
\end{aligned}
$$

end if; end for; end while;
return H.

Word problem and ideal membership

Lemma

Let \prec be a monomial ordering on $K\langle X\rangle$ and G a Gröbner basis of I wrt \prec. Then $f \in I \Leftrightarrow \operatorname{NF}(f, G)=0$.

Applications

triviality: $K\langle X\rangle / I=0 \Leftrightarrow 1 \in I \Leftrightarrow 1 \in G B(I)$
commutativity: $K\langle X\rangle / I$ is commutative $\Leftrightarrow\left\{\left[x_{j}, x_{i}\right]\right\} \subseteq I$
algebraicity: $p \in K\langle X\rangle / I$ is algebraic $\Leftrightarrow \exists k \geq 1, c_{i} \in K: \sum_{i}^{k} c_{i} p^{i} \in I$

Houston, we've got a problem!

We can check the above properties and many more, if a Gröbner basis of I wrt \prec is finite.

Trying various orderings heuristically might sometimes help.
But there are plenty of ideals, which do not have any finite Gröbner basis!

Finiteness of Gröbner bases

Lemma (T. Mora)

If $\operatorname{dim}_{K}(K\langle X\rangle / I)<\infty$, then every minimal Gröbner basis of I is finite.

Proof.

Having a finite K-basis B (wlog monomial) of $K\langle X\rangle / /$ implies, that the set of monomials "below the staircase"

$$
\left\{w \in \operatorname{LM}(I) \mid \exists i \in[1, n] \exists b \in B: w=b x_{i} \text { or } w=x_{i} b\right\}
$$

is finite. The same set clearly generates $\mathrm{LM}(I)$, and hence for any Gröbner basis G of I the monoid ideal $\operatorname{LM}(G)=\operatorname{LM}(I)$ is finitely generated, so a minimal G is finite.

Fine, but what can we do with infinite dimensional algebras?

Finiteness of Gröbner bases II

Proposition

Let $I \subset K\langle X\rangle$ be a graded two-sided ideal and $d>0$ an integer. If I has a finite number of graded generators F of degree $\leq d$ then the algorithm NCGBASIS computes in a finite number of steps all elements of degree $\leq d$ of a graded Gröbner basis of I.

Proof.

Exercise: (a) any overlap polynomial between the elements from F is homogeneous of higher degree,
(b) the normal form of a homogeneous g wrt F is either zero or homogeneous of same degree as g.
This means, that as soon as we process all pairs of polynomials of degree $\leq d$, reduction on overlap polynomials of degree $\geq d+1$ does not have impact on the degrees $\leq d$.
Yet another explanation: since F is a set of graded polynomials, $I=\langle F\rangle$ is a graded ideal $I=\bigoplus I_{i}$.

Finiteness of Gröbner bases III and the word problem

The word problem for finitely presented graded associative algebras is solvable! If $f \in K\langle X\rangle$ is homogeneous of degree d, compute a Gröbner basis of $I_{\leq d}$ (which is finite) and $N F\left(f, I_{\leq d}\right)$.

If an ideal is not graded, then the word problem is unsolvable in general. The truncation of a non-graded ideal up to a given degree is not well-defined, since reduction of overlap polynomials of degree $\geq d+1$ might add new elements of degree $\leq d$.

Models of computation

- we always work up to a fixed degree bound d
- homogeneous input allows to use truncated Gröbner basis up to degree d, where $\forall k \in \mathbb{N} G_{d} \subseteq G_{d+k}$ holds (adaptive)
- inhomogeneous input: either compute a Gröbner basis up to degree d (approximation) or homogenize the input and proceed as before
- problems: Gröbner basis of a homogenized set is rather infinite, ...

Gröbner basis computation in $K\langle X\rangle$: Example

Let $X=\{x, y\}$. Consider $f_{1}=x^{3}-y^{3}=x x x-y y y, f_{2}=x y x-y x y$ and $I=\left\langle f_{1}, f_{2}\right\rangle \subset K\langle X\rangle$ with respect to the degree left lexicographical ordering. We compute truncated Gröbner basis up to degree $d=5$. Let $G=\left\{f_{1}, f_{2}\right\} .\left(\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{1}\right): \operatorname{lm}\left(f_{1}\right)=x x x$, so there are two self-overlaps

$$
o_{1}:=o_{1,1}=f_{1} x-x f_{1}=x y^{3}-y^{3} x, o_{1,2}=f_{1} x^{2}-x^{2} f_{1}=x^{2} y^{3}-y^{3} x^{2}
$$

Moreover, $o_{1,2}-x o_{1,1}=x y^{3} x-y^{3} x^{2}=o_{1,1} x$, so $o_{1,2}$ reduces to 0 . Hence $G:=G \cup\left\{o_{1}\right\}=\left\{\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{\mathbf{2}}, \mathbf{o}_{\mathbf{1}}\right\}$.
$\left(\mathbf{f}_{2}, \mathbf{f}_{2}\right): \operatorname{lm}\left(f_{2}\right)=x y x$, there are two self-overlaps. Symmetry implies that both of them originate from the overlap $x y \cdot x \cdot y x$ of $\operatorname{lm}\left(f_{2}\right)$. Then

$$
o_{2}=f_{2} y x-x y f_{2}=x y y x y-y x y y x . \text { So } G:=G \cup\left\{o_{2}\right\}=\left\{\mathbf{f}_{\mathbf{1}}, \mathbf{f}_{2}, \mathbf{o}_{\mathbf{1}}, \mathbf{o}_{2}\right\}
$$

Gröbner basis in $K\langle X\rangle$: Example continued

$\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right): \operatorname{lm}\left(f_{1}\right)$ and $\operatorname{lm}\left(f_{2}\right)$ have two overlaps $x x \cdot x \cdot y x$ and $x y \cdot x \cdot x x$, hence

$$
o_{3,1}=f_{1} y x-x x f_{2}=x x y x y-y^{4} x \text { and } o_{3,2}=f_{2} x x-x y f_{1}=x y^{4}-y x y x x .
$$

Performing reductions, we see that $o_{3,1}-x f_{2} y-f_{2} y y-y o_{1}=0$ and $o_{32}-o_{1} y+y f_{2} x+y y f_{2}=y y y x y-y y y x y=0$.
$\left(\mathbf{f}_{\mathbf{1}}, \mathbf{o}_{\mathbf{1}}\right)$ has overlap $x x \cdot x \cdot y y y,\left(\mathbf{f}_{\mathbf{2}}, \mathbf{o}_{\mathbf{1}}\right)$ has overlap $x y \cdot x \cdot y y y$, $\left(\mathbf{f}_{\mathbf{1}}, \mathbf{o}_{2}\right)$ has overlap $x x \cdot x \cdot y y x y,\left(\mathbf{o}_{\mathbf{1}}, \mathbf{o}_{2}\right)$ has overlap $x y y \cdot x y \cdot y y$, $\mathbf{o}_{\mathbf{2}}$ has a self-overlap $x y y \cdot x y \cdot y x y$ and $\left(\mathbf{f}_{2}, \mathbf{o}_{\mathbf{2}}\right)$ has two overlaps $x y \cdot x \cdot y y x y$ and $x y y \cdot x y \cdot x$. Since all these elements are of degree ≥ 6 and we are in the graded case, we conclude that $G=\left\{f_{1}, f_{2}, o_{1}, o_{2}\right\}$ is truncated Gröbner basis up to degree 5.

Gröbner bases over free associative algebras: Algorithmics, Implementation, and Applications II

Viktor Levandovskyy and Team

Universität Kassel, Germany and American University Kyiv, Ukraine
Dec 6, 2023, TU Berlin

U N I K A S S E L
 V E R S I T 'A' T

American University Kyiv

Letterplace Gröbner Bases Q\&A

What? Letterplace Gröbner basis is a special generating set for an ideal in infinitely generated commutative ring $K[X \mid P]$. It is tightly connected to the Gröbner basis of an ideal $I \subset K\langle X\rangle$.

Why? Among other, the Letterplace technique works over a commutative polynomial ring, hence know-how's of last 50 years in commutative computer algebra can be reused. For this reason, we have an implementation in Singular calles Letterplace.

What is behind LPGB? The contents of next minutes before the reception.

Who is behind? V. L., Tobias Metzlaff, Leonard Schmitz, Hannes Schönemann, Karim Abou Zeid.

- We present the theory and algorithmics which led to the implementation in the subsystem LETTERPLACE of Singular 4-1-3, for computations with modules over finitely presented associative non-commutative algebras (including free algebras) over effective fields and some rings including \mathbb{Z}.
- We offer very rich functionality at decent speed.
- In particular, we cover not only Gröbner trinity (including syzygies) but also many of Gröbner basics, covering procedures, relevant to old and new applications.
- One can download the newest Singular release 4-1-3 containing LETTERPLACE at
https://www.singular.uni-kl.de

What is and what does Letterplace

The name Letterplace comes from the Letterplace correspondence between the ideals of the free associative algebra $K\langle X\rangle$ and the so-called Letterplace ideals of the infinitely gen. commutative algebra $K[X \mid \mathbb{N}]=K\left[\left\{x_{i}(j): x_{i} \in X, j \in \mathbb{N}\right]\right.$.

- By means of the correspondence, Letterplace Gröbner bases from $K[X \mid \mathbb{N}]$ are transferred back to Gröbner bases in $K\langle X\rangle$.
- This theory together with algorithms was introduced by R. La Scala and V. Levandovskyy (JSC papers 2009, 2013 etc).

In the modern implementation in Singular:Letterplace the user operates with objects in free algebras.
But: internally all computations happen in the Letterplace ring. The very theory allows to use commutative data structures and reuse via reinterpretation some of the functionality.

Fundamental Functionality

Below, F is a set of generators and G is a two-sided Gröbner basis for an ideal or a submodule over $K\langle X\rangle$ or even $\mathbb{Z}\langle X\rangle$.

twostd (F) reduce (p, G)	a two-sided Gröbner basis of F a normal form of a poly/vector p wrt G
syz (F) modulo (M, F)	a generating set of the syzygy bimodule of F kernel of a bimodule homomorphism, defined by M into a bimodule, presented by F
$\operatorname{lift}(M, N)$	lomputation of a bi-transformation matrix between a module M and its submodule N two-sided Gröbner basis, bi-transformation matrix T and (optionally) a generating set S for the syzygy bimodule of F
rightstd (F)	a right Gröbner basis of F especially useful over quotient rings (qring)

Advanced Functionality: libraries in Singular language

freegb.lib	main initialization library (also contains legacy, conversion and technical routines)
fpaprops.lib	various properties such as GK dimension and Noetherianity of fin. pres. algebras
fpadim.lib	vector space dimensions and bases of fin.-dim. algebras, and finite Hilbert series
fpalgebras.lib	predefined relations of many algebras including group algebras of fin. gen. groups
ncHilb.lib (Tiwari, LaScala)	computations of multi-graded Hilbert series of not necessary fin. pres. algebras (automata)

Bimodules and One-sided Modules

For treating not only ideals, but also bimodules, we have to work with a free bimodule of finite rank.

For a finitely presented algebra R, let ε_{i} denote the i-th canonical generator of a free bimodule, commuting only with the constants from the ground field/ring.

Then the free bimodule of rank $r \in \mathbb{N}$ is $\mathcal{F}_{r}(A)=\bigoplus_{i=1}^{r} A \varepsilon_{i} A$.

Realization of objects

In Singular, the canonical (commuting with everything) i-th generator of a free module e_{i} is denoted by gen(i).
We introduce ncgen(i) to be used as ncgen(i) *gen(i).
Operations with one-sided ideals/modules over $K\langle X\rangle$: easy; over fin. pres. algebra $A=K\langle X\rangle / I$ and $\mathcal{F}_{r}(A)$: involved ! We already provide right Gröbner bases for the above.

Gröbner Technology $=$ Gröbner Trinity + Gröbner Basics

Gröbner Trinity consists of three components
(1) STD/GB Gröbner basis \mathcal{G} of a module M
(2) SYZ Gröbner basis of the syzygy module of M
(3) LIFT the transformation matrix between two bases \mathcal{G} and M The function LIFTSTD computes all the trinity data at once.

Gröbner Trinity should be formulated separately for one-sided (left and right) and for two-sided modules (bimodules).
Therefore we have twostd and rightstd functions.

Gröbner basics (as coined by Buchberger, Sturmfels et al.)

... are the most important and fundamental applications of Gröbner Bases.

Universal Gröbner Basics

- Ideal (resp. module) membership problem (reduce, NF)
- Intersection of ideals resp. submodules
- Quotient and saturation of ideals
- Kernel of a module homomorphism (modulo)
- Intersection with subrings (aka elimination of variables)
- Kernel of a ring homomorphism and algebraic dependence between polynomials
- Hilbert series of modules (ncHilb.lib, fpadim.lib)

We offer these and other functionality incl. various dimensions with our latest release, both over effective fields and over \mathbb{Z} as coeffs.

Models of Computation

Problem: $R\langle X\rangle$ is not Noetherian, even if a ring R is a field, thus a generating set and a Gröbner basis need not be finite.
Solution: 1) Formulate procedures in such a way, that in case when a Gröbner basis of a module with respect to a given monomial ordering is finite, the procedure computes it and terminates (Mora, Pritchard).
2) Compute up to a specified length bound (generalizes a degree bound). In the situation, when a module is \mathbb{N}-graded, computing wrt an ordering, compatible with the grading yields a truncated Gröbner basis, which is a part of the complete one. In particular, the word problem in this case is decidable.
3) Bad news: if a module cannot be graded by \mathbb{N} or \mathbb{N}^{n}, and no finite Gröbner basis exists, we know very little on the module. In particular, in this situation the word problem is indecidable.

Monomial Orderings

One advantage of the Letterplace Correspondence is the formulation of the theory for $K\langle X\rangle$ and $\mathbb{Z}\langle X\rangle$ in terms of commutative polynomial data structures.

In the free case there's no analogon to Robbiano's Lemma and there's no classification of monomial orderings.

We provide the following monomial orderings

dp	degree right lexicographical ordering
Dp	degree left lexicographical ordering
$\mathrm{Wp}(\mathrm{w})$	w-weighted degree left lexicographical ordering
$\mathrm{lp} / \mathrm{rp}$	left/right total elimination ordering
$(\mathrm{a}(\mathrm{v}),<)$	extra v-weight ordering extension of <

where $w=\left(w_{1}, \ldots, w_{n}\right), w_{i} \in \mathbb{N}_{+}$and $v=\left(v_{1}, \ldots, v_{n}\right), v_{i} \in \mathbb{N}_{0}$ are weight vectors for the ordered list of variables x_{1}, \ldots, x_{n}.

Note: lp and rp and iterated (a(V1), a(V2),..,a(VN), <) for certain vectors V_{i} are block elimination orderings.

Modules, Grading and Length-incompatible orderings

For submodules of free bimodules we offer constructions of both increasing and decreasing
POT (position-over-term) and TOP (term-over-position) module monomial orderings, using the monomial orderings as above for ordering the elements of the algebra.

Grading is effective with Gröbner computations, when the current monomial ordering is compatible with the \mathbb{N}^{n}-grading.

A price to pay for supporting length-incompatible orderings: stop of a Gröbner-based computation with the message like
? degree bound of Letterplace ring is 10char' but at least 11 is needed for this multiplication

It is not a bug; we do not (yet) see the possibility to automate this.

Algebraic Analysis with Letterplace

Example

In $D_{1}(\mathbb{Q})=\mathbb{Q}\langle x, \partial \mid \partial x=x \partial+1\rangle$, consider the subalgebra S, generated by $\left\{x \partial^{2}, x^{2} \partial\right\}$. S is even \mathbb{Z}-graded as D_{1} itself.
Questions: (1) does the Euler derivation $x \partial$ belong to S ?
(2) What is the kernel of the homo of \mathbb{Q}-algebras

$$
\mathbb{Q}\langle a, b\rangle \rightarrow \mathbb{Q}\langle x, \partial\rangle /\langle\partial x-x \partial-1\rangle, a \mapsto x \partial^{2}, b \mapsto x^{2} \partial,
$$

i.e. find a presentation of S.

Questions like these require computations in the free algebra.

Answers

Use a for $x \partial^{2}, b$ for $x^{2} \partial$ and c for $x \partial$. Then $c \in S$ since
(1) $c=-\frac{1}{40}\left(6(a b)^{2}-21 b a^{2} b+24(b a)^{2}-9 b^{2} a^{2}-32 a b-76 b a\right)$.
(2) $S \cong \mathbb{Q}\langle a, b\rangle / J$, where J is generated by long and complicated

$$
a b^{3}-3 b a b^{2}+3 b^{2} a b-b^{3} a-6 b^{2}, \ldots,
$$

$9 a^{2} b a b-108 b a^{2} b a+171 b a b a^{2}-72 b^{2} a^{3}+34 a^{2} b-800 a b a-\ldots$
Since $\{a, b, c\}$ generate the same algebra as $\{a, b\}$ by (1), we have $S \cong \mathbb{Q}\langle a, b, c\rangle /\left\langle c b-b c-b, c a-a c+a, b a-a b+3 c^{2}-c, c^{3}-a b+c^{2}\right\rangle$.

The Gröbner basis property of the latter ideal of relations imply, that we are dealing with a $G R$-algebra incarnation of S :
$\mathbb{Q}\left\langle a, b, c \mid b a=a b-3 c^{2}+c, c b=b c+b, c a=a c-a\right\rangle /\left\langle c^{3}-a b+c^{2}\right\rangle$.

Thank you for your attention!
《SINGULAR ${ }_{\text {letterplace }}$

() SYCABCLR

New Developments regarding the GK Dimension

One way to compute the GK dimension of $K\langle X\rangle /$ /

Given the Ufnarovski graph of I, one has to count the maximum number of distinct cycles occurring in a single route.
But if there are two distinct cycles with a common vertex in the graph, one is done immediately (i.e. the GKdim is ∞).
Because of this exception we were able to develop the Maximum CYCLE COUNT algorithm which computes this property of the graph in $O(|V|+|E|)$.
Without this exception, the problem is closely related to an NP-hard problem known as \#CYCLE.

We have also generalized this algorithm to f. p. bimodules.

Application to Finitely Presented Algebras

The book "Gröbner Bases in Ring Theory" (2012) by Huishi Li was a motivating companion to us.

We have detected and repaired a serious mistake in an example, running through this book. Namely, for $n \in \mathbb{N}_{0}$ consider the family of ideals $I_{n}=\left\langle X^{n} Y\right\rangle \subset A=K\langle X, Y\rangle$. Then the following holds

- if $n=1, G K \operatorname{dim} A / l_{1}=2=\mathrm{gl} . \operatorname{dim} A / \iota_{1}$,
- for $n \geq 2, G K \operatorname{dim} A / I_{n}=2$ and gl. $\operatorname{dim} A / I_{n}=2$ (false)
- for $n \geq 2, G K \operatorname{dim} A / I_{n}=\infty$ and $g l . \operatorname{dim} A / I_{n}=2$ (true).

Proof: a) We show, that for $n \geq 2 A / I_{n}$ contains a free algebra in two variables by giving explicit generators (this implies $\left.G K \operatorname{dim} A / I_{n}=\infty\right)$ and that only gl. $\operatorname{dim} A / I_{n} \leq 2$ holds.
b) By providing an explicit free bimodule resolution of an ideal over A / I_{n}, we show that gl. $\operatorname{dim} A / I_{n} \geq 2$ holds.
Both cases were heavily supported by computations.

Timings for Gröbner bases over \mathbb{Q} wrt degree right lex (dp)

Intel Core i7-9700K, 64GB RAM, Debian GNU/Linux 10.
Singular 4.1.2 and Magma V2.24-10.

Example	Singular	Magma (BB)	Magma (F4)
lascala_neuh_d10	30.35	26.23	13.62
serre-f4-d15	5.45	62.58	8.96
serre-ha11-d15	11.27	49.63	5.80
serre-eha112-d13	2.05	3.41	1.72
4nilp5s-d8	36.68	55.43	9.54
braidXY	114.19	163.72	4.20
ug2-×1×2×3×4	1.10	21.60	0.83
serre-e6-d15	22.76	154.03	40.99
braid3-11	1.79	2.29	0.64
ufn3	70.22	3.36	2.26
Is3nilp-d10	0.72	3.57	1.98

