THE MODIFIED OPTIMAL \mathcal{H}_∞ CONTROL PROBLEM FOR DESCRIPTOR SYSTEMS

PHILIP LOSSE†, VOLKER MEHRMANN∗†, LISA KATRIN POPPE∗‡, AND TIMO REIS∗

Abstract. The \mathcal{H}_∞ control problem is studied for linear constant coefficient descriptor systems. Necessary and sufficient optimality conditions are derived for systems of arbitrary index. These conditions are formulated in terms of deflating subspaces of even matrix pencils containing only the parameters of the original system. It is shown that this approach leads to a more numerically robust and efficient method in computing the optimal value γ in contrast to other methods such as the widely used Riccati and LMI based approaches. The results are illustrated by a numerical example.

Key words. descriptor system, \mathcal{H}_∞ control, algebraic Riccati equation, even matrix pencil, γ-iteration, deflating subspace

AMS subject classifications. 34A09, 93B40, 93B36, 65F15, 65L80, 93B52, 93C05.

1. Introduction. The optimal infinite-horizon output (or measurement) feedback \mathcal{H}_∞ control problem is one of the central tasks in robust control, see, e.g., [16,17,28,39,40]. For standard state space systems, where the dynamics of the system are modeled by a linear constant coefficient ordinary differential equation, the analysis of this problem is well studied [11] and numerical methods have been developed and integrated in control software packages such as [1,5,18,29]. These methods work well for a wide range of problems in computing close to optimal (suboptimal) controllers but the exact computation of the optimal value γ in \mathcal{H}_∞ control is considered a challenge [8]. In order to avoid some of the numerical difficulties that arise when approaching the optimum, in [3, 4] several improvements of the previously known methods were presented. These are based on the solution of structured eigenvalue problems with structured methods.

In this paper we study the more general case that the dynamics is constrained, i.e. described by a differential-algebraic equation (DAE) or descriptor system. Descriptor systems arise in the control of constrained mechanical systems, see e.g. [12,30,35–37], in electrical circuit simulation, see e.g. [19, 20], and in particular in heterogeneous systems, where different models are coupled [27].

Robust control for descriptor systems has been studied in [31–33] using linear matrix inequalities (LMIs) and in [38] via generalized Riccati equations and J-spectral factorization. In contrast to these approaches, we extend the analysis and the robust numerical methods that were derived via deflating subspaces in [3, 4]. We discuss descriptor systems of the form

$$
E \dot{x}(t) = Ax(t) + B_1 w(t) + B_2 u(t), \quad x(t_0) = x^0,
\quad P : \quad z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t),
\quad y(t) = C_2 x(t) + D_{21} w(t) + D_{22} u(t),
$$

(1.1)

where $E, A \in \mathbb{R}^{n,n}$, $B_i \in \mathbb{R}^{n,m_i}$, $C_i \in \mathbb{R}^{p_i,n}$, and $D_{ij} \in \mathbb{R}^{p_i,m_j}$ for $i, j = 1, 2$. (Here, by $\mathbb{R}^{k,l}$ we denote the set of real $k \times l$ matrices.)

†Fakultät für Mathematik, TU Chemnitz, Reichenhainer Straße 41, D-09126 Chemnitz, FRG; (philip.losse@mathematik.tu-chemnitz.de). Supported by Deutsche Forschungsgemeinschaft through the project BE-2174/6-1,2
‡Partially supported by Deutsche Forschungsgemeinschaft through the project ME 790/16-1
In this system, \(x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^{m_2} \) is the control input vector, and \(w(t) \in \mathbb{R}^{m_1} \) is an exogenous input that may include noise, linearization errors and un-modelled dynamics. The vector \(y(t) \in \mathbb{R}^{p^2} \) contains measured outputs, while \(z(t) \in \mathbb{R}^{p_1} \) is a regulated output or an estimation error. Our approach can also be extended to rectangular systems and systems in behavior formulation, using a remodelling as it was suggested in [22, 24], see also [23], but here we only study the formulation in (1.1).

The optimal \(\mathcal{H}_\infty \) control problem is typically formulated in frequency domain. For this we need the following notation. The space \(\mathcal{H}_{\infty}^{p,m} \) consists of all \(\mathbb{C}^{p,m} \)-valued functions that are analytic and bounded in the complex half plane \(\mathbb{C}^+ = \{ s \in \mathbb{C} : \Re(s) > 0 \} \). For \(F \in \mathcal{H}_{\infty}^{p,m} \) the \(\mathcal{H}_\infty \)-norm is given by

\[
\|F\|_\infty = \sup_{s \in \mathbb{C}^+} \sigma_{\text{max}}(F(s)),
\]

where \(\sigma_{\text{max}}(F(s)) \) denotes the maximal singular value of the matrix \(F(s) \).

In robust control, \(\|F\|_\infty \) is used as a measure of the worst case influence of the disturbances \(w \) on the output \(z \), where in this case \(F \) is the transfer function mapping noise or disturbance inputs to error signals [40].

The optimal \(\mathcal{H}_\infty \) control problem is the task of designing a dynamic controller as presented in Fig. 1.1 that minimizes (or at least approximately minimizes) this measure.

\[
\begin{align*}
\dot{E}\hat{x}(t) &= \hat{A}\hat{x}(t) + \hat{B}y(t), \\
u(t) &= \hat{C}\hat{x}(t) + \hat{D}y(t)
\end{align*}
\]

with \(\hat{E}, \hat{A} \in \mathbb{R}^{N,N}, \hat{B} \in \mathbb{R}^{N,p_2}, \hat{C} \in \mathbb{R}^{m_2,N}, \hat{D} \in \mathbb{R}^{m_2,p_2} \), and transfer function \(K(s) = \hat{C}(s\hat{E} - \hat{A})^{-1}\hat{B} + \hat{D} \) such that the closed-loop system resulting from the combination of (1.1) and (1.2), that is given by

\[
\begin{align*}
\dot{E}\hat{x}(t) &= (A + B_2\hat{D}Z_1C_2)x(t) + (B_2Z_2\hat{C})\hat{x}(t) + (B_1 + B_2\hat{D}Z_1D_{21})w(t), \\
\dot{\hat{x}}(t) &= \hat{B}Z_1C_2x(t) + (\hat{A} + \hat{B}Z_1D_{22}\hat{C})\hat{x}(t) + \hat{B}Z_1D_{21}w(t), \\
z(t) &= (C_1 + D_{12}\hat{D}C_2)x(t) + D_{12}Z_2\hat{C}\hat{x}(t) + (D_{11} + D_{12}\hat{D}Z_1D_{21})w(t)
\end{align*}
\]

with \(Z_1 = (I_{p_2} - D_{22}\hat{D})^{-1} \) and \(Z_2 = (I_{m_2} - \hat{D}D_{22})^{-1} \), has the following properties.

![Fig. 1.1. Interconnection with controller](image-url)
1.) System (1.3) is internally stable, that is, the solution \(\begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} \) of the system with
\(w \equiv 0 \) is asymptotically stable, i.e. \(\lim_{t \to \infty} \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix} = 0 \).

2.) The closed-loop transfer function \(T_{zw}(s) \) from \(w \) to \(z \) satisfies \(T_{zw} \in H_{\infty}^{p,m} \) and is minimized in the \(H_\infty \)-norm.

In principle, there is no restriction on the dimension \(N \) of the auxiliary state \(\dot{x} \) in (1.2), although, smaller dimensions \(N \) are preferred for practical implementation and computation.

As in the case of the optimal \(H_\infty \) control problems for ordinary state space systems it is also necessary to study two closely related optimization problems, the modified optimal \(H_\infty \) control problem and the suboptimal \(H_\infty \) control problem.

Definition 1.2 (The modified optimal \(H_\infty \) control problem.). For the descriptor system (1.1) let \(\Gamma \) be the set of positive real numbers \(\gamma \) for which there exists an internally stabilizing dynamic controller of the form (1.2) so that the transfer function \(T_{zw}(s) \) of the closed loop system (1.3) satisfies \(T_{zw} \in H_\infty^{p,m} \) with \(\|T_{zw}\|_\infty < \gamma \).

Determine \(\gamma_{mo} = \inf \Gamma \). If no internally stabilizing dynamic controller exists, we set \(\Gamma = \emptyset \) and \(\gamma_{mo} = \infty \).

Note that it is possible that there is no internally stabilizing dynamic controller with the property \(\|T_{zw}\|_\infty = \gamma_{mo} \). In this case one solves the suboptimal \(H_\infty \) control problem.

Definition 1.3 (The suboptimal \(H_\infty \) control problem.). For the descriptor system (1.1) and \(\gamma \in \Gamma \) with \(\gamma > \gamma_{mo} \), determine an internally stabilizing dynamic controller of the form (1.2) such that the closed loop transfer function satisfies \(T_{zw} \in H_\infty^{p,m} \) with \(\|T_{zw}\|_\infty < \gamma \). We call such a controller \(\gamma \)-suboptimal controller or simply suboptimal controller.

The outline of the paper is as follows: In the forthcoming section we present the notation and some definitions that are used throughout the paper. Section 3 contains the main result of the paper and states conditions for the existence of an appropriate controller in terms of deflating subspaces of matrix pencils. The proof is given in three parts. First we briefly discuss the standard state space case. The results are then generalized to descriptor systems of index 1 and, thereafter, to systems with arbitrary index. In Section 4 we illustrate the presented theory by means of a numerical example.

2. **Preliminaries.** In this section we introduce some notation and definitions. For symmetric matrices \(A \) and \(B \), by \(A \geq B \) and \(A > B \) we denote that \(A - B \) is positive semi-definite and positive definite, respectively. The spectral radius of a matrix \(A \in \mathbb{R}^{n,n} \) is denoted by \(\rho(A) \). The set of complex numbers with positive real part is denoted by \(\mathbb{C}^+ \) and the set of positive real numbers by \(\mathbb{R}^+ \).

Let \(\lambda E - A \) be a matrix pencil with \(E, A \in \mathbb{R}^{n,n} \). Then \(\lambda E - A \) is called regular if \(\det(\lambda E - A) \neq 0 \) for some \(\lambda \in \mathbb{C} \).

A pencil \(P(\lambda) = \lambda E - A \) is called even if \(P(-\lambda)^T = P(\lambda) \), i.e. if \(E = -E^T \) and \(A = A^T \).

For regular pencils, generalized eigenvalues are the pairs \((\alpha, \beta) \in \mathbb{C}^2 \setminus \{(0,0)\} \) for which \(\det(\alpha E - \beta A) = 0 \). If \(\beta \neq 0 \), then the pair represents the finite eigenvalue \(\lambda = \alpha/\beta \). If \(\beta = 0 \), then \((\alpha, \beta) \) represent the eigenvalue infinity. In the following we use the notation with \(\lambda \).

The solution and many properties of the free descriptor system (with \(u, w = 0 \)) can be characterized in terms of the Weierstrass canonical form (WCF).
THEOREM 2.1. \cite{15} For a regular matrix pencil \(\lambda E - A \), there exist matrices \(W_f, V_f \in \mathbb{R}^{n \times n_f}, W_\infty, V_\infty \in \mathbb{R}^{n \times n_\infty} \) with the property that \(W = [W_f \ W_\infty] \), \(V = [V_f \ V_\infty] \) are square and invertible, with

\[
W^T EV = \begin{bmatrix} W_f^T \\ W_\infty^T \end{bmatrix} E \begin{bmatrix} V_f & V_\infty \end{bmatrix} = \begin{bmatrix} I_{n_f} & 0 \\ 0 & N \end{bmatrix}, \tag{2.1a}
\]

\[
W^T AV = \begin{bmatrix} W_f^T \\ W_\infty^T \end{bmatrix} A \begin{bmatrix} V_f & V_\infty \end{bmatrix} = \begin{bmatrix} A_f & 0 \\ 0 & I_{n_\infty} \end{bmatrix}, \tag{2.1b}
\]

\(A_f \in \mathbb{R}^{n_f \times n_f} \) is in real Jordan canonical form and \(N \in \mathbb{R}^{n_\infty \times n_\infty} \) is a nilpotent matrix, also in Jordan canonical form. We call \(n_f, n_\infty \) the number of finite or infinite eigenvalues, respectively.

The index of nilpotency of the nilpotent matrix \(N \) in (2.1a) is called the index of the system and if \(E \) is nonsingular, then the pencil is said to have index zero.

DEFINITION 2.2. A subspace \(\mathcal{L} \subset \mathbb{R}^n \) is called deflating subspace for the pencil \(\lambda E - A \) if for a matrix \(X_\mathcal{L} \in \mathbb{R}^{n \times k} \) with full column rank and \(\text{im} \ X_\mathcal{L} = \mathcal{L} \) there exist matrices \(Y_\mathcal{L} \in \mathbb{R}^{n \times k}, R_\mathcal{L} \in \mathbb{R}^{k \times k}, \) and \(U_\mathcal{L} \in \mathbb{R}^{k \times k} \) such that

\[
EX_\mathcal{L} = Y_\mathcal{L}R_\mathcal{L}, \quad AX_\mathcal{L} = Y_\mathcal{L}U_\mathcal{L}. \tag{2.2}
\]

A deflating subspace \(\mathcal{L} \) of \(\lambda E - A \) is called stable (semi-stable) if all finite eigenvalues of \(\lambda R_\mathcal{L} - U_\mathcal{L} \) are in the open (closed) left half plane.

Let \(J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \), where \(I_n \) is the \(n \times n \) identity matrix. A subspace \(\mathcal{L} \subset \mathbb{R}^{2n} \) is called isotropic if \(x^T J y = 0 \) for all \(x, y \in \mathcal{L} \). An isotropic subspace with \(\dim \mathcal{L} = n \) is called Lagrangian.

In the notation of (2.1a)-(2.1b) with

\[
B_{i,f} = W_f^T B_i, \quad B_{i,\infty} = W_\infty^T B_i, \quad C_{i,f} = C_i V_f, \quad C_{i,\infty} = C_i V_\infty, \quad i = 1, 2 \tag{2.3}
\]
classical solutions of (1.2) take the form \(x(t) = V_f x_f(t) + V_\infty x_\infty(t) \), where \(x_f \) and \(x_\infty \) satisfy

\[
\dot{x}_f(t) = A_f x_f(t) + B_{1,f} w(t) + B_{2,f} u(t), \tag{2.4a}
\]

\[
\dot{x}_\infty(t) = x_\infty(t) + B_{1,\infty} w(t) + B_{2,\infty} u(t). \tag{2.4b}
\]

If the pencil \(\lambda E - A \) has index \(\nu \), then this system has the explicit solution

\[
x_f(t) = e^{A_f (t-t_0)} x_f(t_0) + \int_{t_0}^{t} e^{A_f (t-\tau)} (B_{1,f} w(\tau) + B_{2,f} u(\tau)) \, d\tau, \tag{2.5a}
\]

\[
x_\infty(t) = -\sum_{i=0}^{\nu-1} \frac{d^i}{dt^i} N^i \left(B_{1,\infty} w(t) + B_{2,\infty} u(t) \right). \tag{2.5b}
\]

In contrast to standard state space systems, this shows that the initial condition \(x_\infty(t_0) \) is restricted by (2.5b). Moreover, if \(\nu > 1 \), then the solution will depend on derivatives of the input \(u \) and the disturbance \(w \).

Note further that for the closed loop system (1.3) to be internally stable, the controller has to be designed so that both \(x_f \) and \(x_\infty \) are asymptotically stable. While for the finite part this can be guaranteed if the spectrum of the matrix \(A_f \) lies in the open left half plane, for the infinite part this has to be explicitly achieved by the construction of the controller.
As in the case of standard state space systems, certain conditions will be needed to guarantee the existence of optimal \mathcal{H}_∞ controls. First of all these are stabilizability and detectability conditions, which for descriptor systems are the following, see [6,9].

Definition 2.3. Let $E, A \in \mathbb{R}^{n,n}$, $B \in \mathbb{R}^{n,m}$ and $C \in \mathbb{R}^{p,n}$. Further, let T_∞, S_∞ be matrices with $\text{im}T_\infty = \ker E^T$ and $\text{im} S_\infty = \ker E$.

i) The triple (E, A, B) is called finite dynamics stabilizable if $\text{rank}[\lambda E - A, B] = n$ for all $\lambda \in \mathbb{C}^+$;

ii) (E, A, B) is impulse controllable if $\text{rank}[E, AS_\infty, B] = n$;

iii) (E, A, B) is strongly stabilizable if it is both finite dynamics stabilizable and impulse controllable;

iv) The triple (E, A, C) is finite dynamics detectable if $\text{rank}[\lambda E^T - AT, C^T] = n$ for all $\lambda \in \mathbb{C}^+$;

v) (E, A, C) is impulse observable if $\text{rank}[E^T, AT, C^T] = n$;

vi) $(\lambda E - A, C)$ is strongly detectable if it is both finite dynamics detectable and impulse observable.

After introducing our notation and giving some preliminary results, we derive the theoretical basis for the optimal \mathcal{H}_∞ control problem for descriptor systems in the next section.

3. The Modified optimal \mathcal{H}_∞ control problem. In this section we approach the problem of determining γ_{mo} for a given system (1.1). As in the case of standard state space systems, see [16, 17, 28, 40], we need several assumptions on the system matrices. In the following we set $r = \text{rank } E$.

Assumptions:

A1) The triple (E, A, B_2) is strongly stabilizable and the triple (E, A, C_2) is strongly detectable, see Definition 2.3.

A2) $\text{rank} \begin{bmatrix} A - i\omega E & B_2 \\ C_1 & D_{12} \end{bmatrix} = n + m_2$ for all $\omega \in \mathbb{R}$.

A3) $\text{rank} \begin{bmatrix} A - i\omega E & B_1 \\ C_2 & D_{21} \end{bmatrix} = n + p_2$ for all $\omega \in \mathbb{R}$.

A4) For matrices $T_\infty, S_\infty \in \mathbb{R}^{n,n-r}$ with $\text{im} S_\infty = \ker E$ and $\text{im} T_\infty = \ker E^T$ holds

$$\text{rank} \begin{bmatrix} T_\infty AS_\infty \\ C_1 S_\infty \end{bmatrix} = n + m_2 - r,$$

$$\text{rank} \begin{bmatrix} T_\infty AS_\infty \\ C_2 S_\infty \end{bmatrix} = n + p_1 - r.$$

It is well known for standard state space systems that Assumption A1) is essential for the existence of a controller that internally stabilizes the system. We will see that a similar result holds for the descriptor case. Assumptions A2) and A3) correspond to the typical claim that the system does not have transmission zeros on the imaginary axis. This is assumed in many works about \mathcal{H}_∞ control of standard state space systems, since eigenvalues on the imaginary axis of the Hamiltonian matrices that are used in the computation of an optimal controller usually lead to problems in the computation of a semi-stable subspace, see [26, 34].

Further typical assumptions in the \mathcal{H}_∞ control of standard state space systems are that D_{12}, D_{21} have full column rank, see [17, 28, 40]. The conditions in A4) reduce to these rank conditions if E is invertible.
For the construction of optimal or suboptimal controllers we will make use of the following two even matrix pencils, which generalize the pencils constructed in [3, 4]. Let

\[
\lambda N_H + M_H(\gamma) = \begin{bmatrix}
0 & -\lambda E^T - A^T & 0 & 0 & -C_1^T \\
\lambda E - A & 0 & -B_1 & -B_2 & 0 \\
0 & -B_2^T & -\gamma^2 I_{m_1} & 0 & -D_{11}^T \\
0 & -C_1 & 0 & -D_{12} & -I_{p_1}
\end{bmatrix}
\] (3.1)

and

\[
\lambda N_J + M_J(\gamma) = \begin{bmatrix}
0 & -\lambda E - A & 0 & 0 & -B_1 \\
\lambda E^T - A^T & 0 & -C_1^T & -C_2^T & 0 \\
0 & -C_1 & -\gamma^2 I_{p_1} & 0 & -D_{11} \\
0 & -C_2 & 0 & 0 & -D_{21} \\
-B_1^T & 0 & -D_{11}^T & -D_{21}^T & -I_{m_1}
\end{bmatrix}.
\] (3.2)

Our approach is based on considering deflating subspaces of the matrix pencils (3.1) and (3.2), where the subspaces are spanned by the columns of the matrices \(X_H\) and \(X_J\) that are partitioned conformably with the pencils, i.e.,

\[
X_H(\gamma) = \begin{bmatrix}
X_{H,1}(\gamma) \\
X_{H,2}(\gamma) \\
X_{H,3}(\gamma) \\
X_{H,4}(\gamma) \\
X_{H,5}(\gamma)
\end{bmatrix},
X_J(\gamma) = \begin{bmatrix}
X_{J,1}(\gamma) \\
X_{J,2}(\gamma) \\
X_{J,3}(\gamma) \\
X_{J,4}(\gamma) \\
X_{J,5}(\gamma)
\end{bmatrix},
\] (3.3)

with

\[
X_{H,1}(\gamma), X_{H,2}(\gamma), X_{J,1}(\gamma), X_{J,2}(\gamma) \in \mathbb{R}^{n,r}, X_{H,4}(\gamma) \in \mathbb{R}^{m_2,r},
X_{J,4}(\gamma) \in \mathbb{R}^{p_2,r}, X_{H,3}(\gamma), X_{J,3}(\gamma) \in \mathbb{R}^{m_1,r}, X_{H,5}(\gamma), X_{J,5}(\gamma) \in \mathbb{R}^{p_1,r}.
\]

We extend the results in [3, 4] to general descriptor systems and use deflating subspaces of the even pencils (3.1) and (3.2) to characterize the elements of the set \(\Gamma\) in Definition 1.1. For this we introduce the following conditions which will be shown to be necessary for the existence of a controller with the desired properties associated with a parameter \(\gamma \in \Gamma\).

C1 The index of both pencils (3.1) and (3.2) is at most one.

C2 There exists a matrix \(X_H(\gamma)\) as in (3.3) such that

C2.a the space \(\text{im } X_H(\gamma)\) is a semi-stable deflating subspace of \(\lambda N_H + M_H(\gamma)\) and \(\text{im } [\begin{smallmatrix} X_{H,1} \\ X_{H,2} \end{smallmatrix}]\) is an \(r\)-dimensional isotropic subspace of \(\mathbb{R}^{2n}\);

C2.b \(\text{rank } E X_{H,1}(\gamma) = r\).

C3 There exists a matrix \(X_J(\gamma)\) as in (3.3) such that

C3.a the space \(\text{im } X_J(\gamma)\) is a semi-stable deflating subspace of \(\lambda N_J + M_J(\gamma)\) and \(\text{im } [\begin{smallmatrix} X_{J,1} \\ X_{J,2} \end{smallmatrix}]\) is an \(r\)-dimensional isotropic subspace of \(\mathbb{R}^{2n}\);

C3.b \(\text{rank } E^T X_{J,1}(\gamma) = r\).

Based on these conditions on the pencils, we introduce the following sets.

Definition 3.1. Consider system (1.1) and the associated even pencils \(\lambda N_H + M_H(\gamma)\) in (3.1) and \(\lambda N_J + M_J(\gamma)\) in (3.2). Define the sets

\[
\Gamma_H = \{ \gamma \in \mathbb{R}^+ \mid \text{the index of } \lambda N_H + M_H(\gamma) \text{ is greater than one} \},
\]

\[
\Gamma_J = \{ \gamma \in \mathbb{R}^+ \mid \text{the index of } \lambda N_J + M_J(\gamma) \text{ is greater than one} \},
\]
and set $\hat{\gamma}_H = \sup \Gamma_H$, $\hat{\gamma}_J = \sup \Gamma_J$ and $\hat{\gamma} = \max\{\hat{\gamma}_H, \hat{\gamma}_J\}$.

Note that in general the sets Γ_H and Γ_J may be all of \mathbb{R}^+, but as we will show later it follows from the assumptions A1) – A4) that $\hat{\gamma}_H$ and $\hat{\gamma}_J$ and therefore also $\hat{\gamma}$ are finite. If $\gamma > \hat{\gamma}$ then, since both $\lambda N_H + M_H(\gamma)$ and $\lambda N_J + M_J(\gamma)$ have index at most one, it follows that these pencils have $2r$ finite eigenvalues, where $r = \text{rank } E$. Due to the fact that the pencils are even, and thus the eigenvalues occur in pairs $\lambda, -\lambda$, see [25], it follows that there exist at least r eigenvalues in the closed left half complex plane and at most r eigenvalues in the open left half plane.

The next group of sets are related to the conditions C2.a) and C2.b).

Definition 3.2. Consider (1.1) and the associated even pencils $\lambda N_H + M_H(\gamma)$ in (3.1) and $\lambda N_J + M_J(\gamma)$ in (3.2). Define the sets

$$
\Gamma^L_H = \{ \gamma \geq \hat{\gamma} \mid \text{the pencil } \lambda N_H + M_H(\gamma) \text{ satisfies C2.a)} \} ,
$$

$$
\Gamma^L_J = \{ \gamma \geq \hat{\gamma} \mid \text{the pencil } \lambda N_J + M_J(\gamma) \text{ satisfies C3.a)} \} ,
\Gamma^L = \Gamma^L_J \cap \Gamma^L_H ,
$$

$$
\Gamma^R_H = \{ \gamma \geq \hat{\gamma} \mid \text{the pencil } \lambda N_H + M_H(\gamma) \text{ satisfies condition C2)} \} ,
$$

$$
\Gamma^R_J = \{ \gamma \geq \hat{\gamma} \mid \text{the pencil } \lambda N_J + M_J(\gamma) \text{ satisfies condition C3)} \} ,
\Gamma^R = \Gamma^R_J \cap \Gamma^R_H
$$

and set

$$
\hat{\gamma}^L_H = \inf \Gamma^L_H , \quad \hat{\gamma}^L_J = \inf \Gamma^L_J , \quad \hat{\gamma}^L = \inf \Gamma^L ,
$$

$$
\hat{\gamma}^R_H = \inf \Gamma^R_H , \quad \hat{\gamma}^R_J = \inf \Gamma^R_J , \quad \hat{\gamma}^R = \inf \Gamma^R .
$$

For the numerical method to compute the optimal or suboptimal \mathcal{H}_∞ it will turn out to be essential to figure out these extremal values. Finally we discuss the situation of finite purely imaginary eigenvalues.

Definition 3.3. Consider (1.1) and the associated even pencils $\lambda N_H + M_H(\gamma)$ in (3.1) and $\lambda N_J + M_J(\gamma)$ in (3.2). Define the sets

$$
\Gamma^I_H = \{ \gamma \geq \hat{\gamma} \mid \text{the pencil } \lambda N_H + M_H(\gamma) \text{ has at least one finite eigenvalue on the imaginary axis} \} ,
$$

$$
\Gamma^I_J = \{ \gamma \geq \hat{\gamma} \mid \text{the pencil } \lambda N_J + M_J(\gamma) \text{ has at least one finite eigenvalue on the imaginary axis} \} ,
\Gamma^I = \Gamma^I_J \cap \Gamma^I_H
$$

and set

$$
\hat{\gamma}^I_H = \inf \Gamma^I_H , \quad \hat{\gamma}^I_J = \inf \Gamma^I_J , \quad \hat{\gamma}^I = \inf \Gamma^I .
$$

In the case where Γ^I_H, Γ^I_J or Γ^I are empty, we set $\hat{\gamma}^I_H = \infty$, $\hat{\gamma}^I_J = \infty$ or $\hat{\gamma}^I = \infty$, respectively.

As in classical \mathcal{H}_∞ control problem for state space systems, see [4], we also need some further rank conditions which are characterized in the following theorem that is proven in full generality in Subsection 3.3.

Theorem 3.4. Consider a system of the form (1.1) satisfying assumptions A1) – A4). Let $X_H(\gamma)$ and $X_J(\gamma)$ be deflating subspace matrices of the form (3.3) that satisfy conditions C2) and C3), respectively. Then there exist parameters $\hat{\gamma}^k_H \geq \hat{\gamma}^k_F$, $\hat{\gamma}^k_J \geq \hat{\gamma}^k_F$ and $k_H, k_J \in \mathbb{N}$ with the property that for all $\gamma_H, 1 \geq \gamma_H, \gamma_J, 1 \geq \gamma_J$ the rank conditions hold:

$$
\text{rank } E^T X_{H,2}(\gamma_{H,1}) = \text{rank } E^T X_{H,2}(\gamma_{H,2}) = k_H ,
$$

$$
\text{rank } E X_{J,2}(\gamma_{J,1}) = \text{rank } E X_{J,2}(\gamma_{J,2}) = k_J,
$$

(3.4)
This rank property will be the basis for the formulation of a further condition on the pencils in (3.1), (3.2) and on the blocks of the deflating subspace matrices $X_H(\gamma) \in \mathbb{R}^{2n+m_1+m_2+p_1,r}$, $X_J(\gamma) \in \mathbb{R}^{2n+p_1+p_2+m_1,r}$ satisfying C2 (resp. C3)).

C4) The matrix

$$Y(\gamma) = \begin{bmatrix} -\gamma X_{H,2}(\gamma)EX_{H,1}(\gamma) & X_{H,2}(\gamma)EX_{J,2}(\gamma) \\ X_{J,2}(\gamma)EX_{H,2}(\gamma) & -\gamma X_{J,2}(\gamma)EX_{J,1}(\gamma) \end{bmatrix} \tag{3.5}$$

is symmetric, positive semi-definite and satisfies rank $Y(\gamma) = \hat{k}_H + \hat{k}_J$.

Since $X_H(\gamma)$ and $X_J(\gamma)$ are unique up to a multiplication from the right with invertible matrices, $Y(\gamma)$ is unique up to a block-diagonal congruence transformation. Therefore, the value rank $Y(\gamma)$ is well-defined.

Note that if we consider $Y(\gamma)$ in the standard case $E = I_n$, then it slightly differs from the matrix $Y(\gamma)$ used in [4]. This is due to the fact that the pencils (3.1) and (3.2) are expressed in a slightly different form in the generalization to descriptor systems.

Condition C4) then leads to another set that has to be considered.

Definition 3.5. Consider a system of the form (1.1) that satisfies assumptions A1) – A4). Then we define

$$\Gamma^p = \left\{ \gamma \geq \hat{\gamma} \mid \text{the matrix } Y(\gamma) \text{ is positive semi-definite with rank } Y(\gamma) = \hat{k}_H + \hat{k}_J \right\}$$

and we set $\hat{\gamma}^p := \inf \Gamma^p$.

In this section we have introduced several assumptions and conditions as well as sets of γ-parameters that will be used in the next section to derive conditions for the optimal and suboptimal γ-parameters.

We proceed in three steps, first recalling the standard state space case in Subsection 3.1, then considering the index one case in Subsection 3.2 and finally the general case in Subsection 3.3.

3.1. The standard state space case.

In the first step, we briefly review the results from [4,11] for the standard state space, that is $E = I_n$. The relation between the values introduced in Definitions 3.1–3.3 is given by the following proposition.

Proposition 3.6. [4] Consider a system of the form (1.1) with $E = I_n$. Then the following inequality holds:

$$0 \leq \hat{\gamma}^I \leq \hat{\gamma}^L \leq \hat{\gamma}^R. \tag{3.6}$$

If $\hat{\gamma}^I < \infty$, then $\hat{\gamma}^I = \hat{\gamma}^L > \hat{\gamma}$. If $\hat{\gamma}^p$ exists, then $\hat{\gamma}^p \geq \hat{\gamma}^R$.

Furthermore it was shown in [4] that Theorem 3.4 holds if $E = I_n$. Therefore, C4) represents a well-defined condition and we can present the main result for the modified optimal H_∞ control problem of standard systems.

Proposition 3.7. [4] Consider system (1.1) with $E = I_n$ and the even pencils $\lambda N_H + M_H(\gamma)$ and $\lambda N_J + M_J(\gamma)$ as in (3.1) and (3.2), respectively. Suppose that assumptions A1) – A4) hold.

Then there exists an internally stabilizing controller such that the transfer function from w to z satisfies $T_{zw} \in H_{\infty}^{p_2,m_1}$ with $\|T_{zw}\|_\infty < \gamma$ if and only if γ is such that the conditions C1) – C4) hold.

Furthermore, the set of γ satisfying the conditions C1) – C4) is non-empty.
3.2. The Index One Case. To extend Proposition 3.7 to the case that the index of $\lambda E - A$ is $\nu = 1$, we will make use of the Weierstraß canonical form in Theorem 2.1. Transforming system (1.1) and using the notation introduced in (2.3), the explicit solution (2.5b) reduces to

$$x_{\infty}(t) = -B_{1,\infty}w(t) - B_{2,\infty}u(t).$$

Inserting this into the transformed out equations, we obtain the standard state space system (often called the slow or finite dynamics subsystem)

$$\dot{x}_f(t) = A_fx_f(t) + B_{1,f}w(t) + B_{2,f}u(t),$$

$$z(t) = C_{1,f}x_f(t) + (D_{11} - C_{1,\infty}B_{1,\infty})w(t) + (D_{12} - C_{1,\infty}B_{2,\infty})u(t),$$

$$y(t) = C_{2,f}x_f(t) + (D_{21} - C_{2,\infty}B_{1,\infty})w(t) + (D_{22} - C_{2,\infty}B_{2,\infty})u(t).$$

Lemma 3.8. Consider system (1.1) and suppose that the index of $\lambda E - A$ is at most one. Then for $i \in \{1, 2, 3, 4\}$, system (1.1) satisfies Ai if and only if the slow subsystem (3.7) satisfies Ai_i.

Proof. Any system of index at most one is both impulse controllable and observable, see [9, 26] and, furthermore, finite dynamics stabilizability (detectability) is equivalent to stabilizability (detectability) of the slow subsystem obtained from the Weierstraß canonical form. Then from Theorem 2.1, see also [9, 26], the equivalence of the corresponding conditions A1_i is immediate.

The equivalence for the corresponding conditions A2_i is obtained by using the transformation matrices to Weierstraß canonical form, since

$$\begin{bmatrix}
W_f^T & 0
\end{bmatrix}
\begin{bmatrix}
A_i - i\omega B_2
& B_2
C_1 & D_{12}
\end{bmatrix}
\begin{bmatrix}
V_f & -V_{\infty}B_{2,\infty}
& V_{\infty}
\end{bmatrix}
= \begin{bmatrix}
A_f - i\omega I_{n_f} & B_{2,f}
C_1,f & D_{12} - C_{2,\infty}B_{2,\infty}
0 & 0
\end{bmatrix}
\begin{bmatrix}
I_{m_f} & 0
0 & I_{n_{\infty}}
\end{bmatrix}.$$

The proof for the equivalence of the corresponding conditions A3_i is analogous.

We now consider condition A4_i. By definition, the columns of the matrices T_{∞}, S_{∞} span the left and right nullspace of E. Thus there exist invertible matrices $M_l, M_r \in \mathbb{R}^{n_{\infty} \times n_{\infty}}$ such that $W_{\infty} = T_{\infty}M_l, V_{\infty} = S_{\infty}M_r$. The assertion then follows from

$$\begin{bmatrix}
M_l^T & 0
\end{bmatrix}
\begin{bmatrix}
T_{\infty}AS_{\infty} & T_{\infty}B_2
C_1S_{\infty} & D_{12}
\end{bmatrix}
\begin{bmatrix}
M_r & -M_rB_{2,\infty}
0 & I_{m_2}
\end{bmatrix}
= \begin{bmatrix}
I_{n_{\infty}} & 0
0 & D_{12} - C_{1,\infty}B_{2,\infty}
\end{bmatrix},$$

$$\begin{bmatrix}
M_l^T & 0
\end{bmatrix}
\begin{bmatrix}
T_{\infty}AS_{\infty} & T_{\infty}B_1
C_2S_{\infty} & D_{21}
\end{bmatrix}
\begin{bmatrix}
M_r & -M_rB_{1,\infty}
0 & I_{m_1}
\end{bmatrix}
= \begin{bmatrix}
I_{n_{\infty}} & 0
0 & D_{21} - C_{2,\infty}B_{1,\infty}
\end{bmatrix}. \quad \square$$

After proving the equivalence of the conditions Ai_i, we now show that the Γ sets and γ parameter introduced in Definitions 3.1–3.3 and 3.5 are those of the slow subsystem. We denote by $\lambda N_{H,st} + M_{H,st}(\gamma)$ and $\lambda N_{f,st} + M_{f,st}(\gamma)$ the even pencils (3.1) and (3.2) constructed from the data of system (3.7).
LEMMA 3.9. Consider the system (1.1) and assume that the index of \(\lambda E - A \) is at most one. Let \(\lambda N_H + M_H(\gamma) \) and \(\lambda N_J + M_J(\gamma) \) be the even pencils constructed from the data of (1.1) and let \(\lambda N_{H,st} + M_{H,st}(\gamma), \lambda N_{J,st} + M_{J,st}(\gamma) \) be the corresponding pencils constructed from the data of (3.7).

Let \(\Gamma_H, \Gamma_J, \Gamma^H_H, \Gamma^J_H, \Gamma^R_H, \Gamma^I_H \) and \(\Gamma^J_J \) be the sets introduced in Definitions 3.1–3.3 and 3.5 and let \(\gamma(\gamma) \) be the matrix introduced in (3.5).

Let analogously \(\Gamma_{H,st}, \Gamma_{J,st}, \Gamma^L_{H,st}, \Gamma^L_{J,st}, \Gamma^R_{H,st}, \Gamma^I_{H,st}, \Gamma^J_{J,st} \) and \(\gamma(\gamma) \) be correspondingly defined for the slow subsystem (3.7). Then,

\[
\begin{align*}
\Gamma_{J,st} &= \Gamma_H, & \Gamma^L_{H,st} &= \Gamma^L_H, & \Gamma^R_{H,st} &= \Gamma^R_H, & \Gamma^I_{H,st} &= \Gamma^I_H, \\
\Gamma_{J,st} &= \Gamma_J, & \Gamma^L_{J,st} &= \Gamma^L_J, & \Gamma^I_{J,st} &= \Gamma^I_J, & \text{rank } \gamma(\gamma) &= \text{rank } \gamma(\gamma).
\end{align*}
\]

Proof. First we consider the pencil \(\lambda N_H + M_H(\gamma) \) and introduce the transformation matrix

\[
P_H = \begin{bmatrix}
V_f^T & 0 & 0 & 0 & 0 \\
0 & W_f^T & 0 & 0 & 0 \\
B_1^T V_f^T & 0 & I_{m_2} & 0 \\
B_2^T V_f^T & 0 & 0 & I_{m_2} & 0 \\
V_f^T & -C_1 W_f^T & 0 & 0 & I_p \\
0 & 0 & 0 & 0 & 0 \\
0 & W_f^T & 0 & 0 & 0
\end{bmatrix}.
\]

We obtain that

\[
\lambda P_H^T N_H P_H + P_H^T M_H(\gamma) P_H = \begin{bmatrix}
\lambda N_{H,st} + M_{H,st}(\gamma) & 0 & 0 \\
0 & I_{n_{\infty}} & 0 \\
0 & 0 & I_{n_{\infty}}
\end{bmatrix}.
\]

This directly implies \(\Gamma_{H,st} = \Gamma_H \) and \(\Gamma^J_{H,st} = \Gamma^J_H \). Analogously, we can show that \(\Gamma_{J,st} = \Gamma_J \) and \(\Gamma^I_{H,st} = \Gamma^I_H \). Furthermore, it can be concluded from (3.9) that the columns of a matrix

\[
X_{H,st} = \begin{bmatrix}
X_{H,st,1}^T & X_{H,st,2}^T & X_{H,st,3}^T & X_{H,st,4}^T & X_{H,st,5}^T
\end{bmatrix}^T
\]

partitioned conformably to the block structure of \(\lambda N_{H,st} + M_{H,st}(\gamma) \) span a semi-stable deflating subspace of \(\lambda N_{H,st} + M_{H,st}(\gamma) \).

An analogous relation can be derived for the relation between spanning matrices of deflating subspaces of \(\lambda N_J + M_J(\gamma) \) and \(\lambda N_{J,st} + M_{J,st}(\gamma) \). Using the fact that
\(EV_\infty = 0, W_\infty^T E = 0\) and \(W_\infty^T EV_f = I_{n_f}\), it follows that

\[
\begin{align*}
\text{rank } EX_{H,1}(\gamma) &= \text{rank } X_{H,\text{st},1}(\gamma), \quad (3.11a) \\
\text{rank } E^T X_{J,1}(\gamma) &= \text{rank } X_{J,\text{st},1}(\gamma), \quad (3.11b) \\
\text{rank } E^T X_{H,2}(\gamma) &= \text{rank } X_{H,\text{st},2}(\gamma), \quad (3.11c) \\
\text{rank } EX_{J,2}(\gamma) &= \text{rank } X_{J,\text{st},2}(\gamma), \quad (3.11d) \\
X_{H,2}(\gamma)^T EX_{H,1}(\gamma) &= X_{H,\text{st},2}(\gamma)^T X_{H,\text{st},1}(\gamma), \quad (3.11e) \\
X_{H,2}(\gamma)^T \text{EX}_{J,2}(\gamma) &= X_{H,\text{st},2}(\gamma)^T X_{J,\text{st},2}(\gamma), \quad (3.11f) \\
X_{J,2}(\gamma)^T E^T X_{J,1}(\gamma) &= X_{J,\text{st},2}(\gamma)^T X_{J,\text{st},1}(\gamma). \quad (3.11g)
\end{align*}
\]

Equations (3.11c) and (3.11g) and the relations between the stable deflating subspaces of \(\lambda N_H + M_H(\gamma), \lambda N_{H,\text{st}} + M_{H,\text{st}}(\gamma)\) and \(\lambda N_J + M_J(\gamma), \lambda N_{J,\text{st}} + M_{J,\text{st}}(\gamma)\), respectively, imply that \(\Gamma_{H,\text{st}}^H = \Gamma_{H,\text{st}}^J\) and \(\Gamma_{J,\text{st}}^H = \Gamma_{J,\text{st}}^J\). Additionally, from (3.11a), (3.11b), we obtain \(\Gamma_{H,\text{st}}^H = \Gamma_{H,\text{st}}^J\) and \(\Gamma_{J,\text{st}}^H = \Gamma_{J,\text{st}}^J\).

By using (3.11e)-(3.11g) we then obtain that the matrices \(\mathcal{U}(\gamma)\) and \(\mathcal{U}_{\text{st}}(\gamma)\) coincide, in particular, we have rank \(\mathcal{U}(\gamma) = \text{rank } \mathcal{U}_{\text{st}}(\gamma)\).

An immediate consequence is that Proposition 3.6 holds for systems of index at most one. Furthermore, from (3.11c) and (3.11b) and the corresponding fact for standard systems, we can conclude that Theorem 3.4 holds for systems of index at most one.

With these preparations we can formulate the following extension of Proposition 3.7 for systems of index at most one.

Proposition 3.10. Consider system (1.1) such that the index of the pencil \(\lambda E - A\) is at most one, and the even pencils \(\lambda N_H + M_H(\gamma)\) and \(\lambda N_J + M_J(\gamma)\) as in (3.1) and (3.2), respectively. Suppose that assumptions A1) – A4) hold.

Then there exists an internally stabilizing controller such that the transfer function from \(w\) to \(z\) satisfies \(T_{zw} \in H_\infty^{n \times m_1}\) with \(\|T_{zw}\|_\infty < \gamma\) if and only if \(\gamma\) is such that the conditions C1) – C4) holds.

Furthermore, the set of \(\gamma\) satisfying the conditions C1) – C4) is nonempty.

Proof. The closed-loop transfer function \(T_{zw}(s)\) of the system (3.7) with a controller of the form (1.2) is equal to the closed-loop transfer function of the system (1.1) with the same controller.

Since (1.1) is strongly stabilizable (strongly detectable), if and only if system (3.7) is stabilizable (detectable), a controller that internally stabilizes (3.7) also stabilizes the finite dynamics of (1.1).

Therefore, the existence of a controller with desired properties for (1.1) is equivalent to the existence of such a controller for (3.7). Since by Lemma 3.8 the validity of assumptions A1) – A4) for (3.7) is equivalent to those of (1.1) and, furthermore, also by Lemma 3.9 the corresponding conditions C1) – C4) of these two systems are equivalent, the assertion follows.

We have seen so far that the standard state space case and the index one case follow after some simple transformation. In the next subsection we now study the general case.

3.3. The General Case

In this section we formulate the results for the modified optimal \(H_\infty\) control problem for descriptor systems of arbitrary index. A key tool in the proof will be an a priori static output feedback \(u(t) = Ky(t) + \bar{u}(t)\) resulting
in a system

\[
E \dot{x}(t) = (A + B_2 KC_2) x(t) + (B_1 + B_2 KD_{21}) w(t) + B_2 \bar{u}(t), \quad x(t_0) = x^0, \\
z(t) = (C_1 + D_{12} KC_2) x(t) + (D_{11} + D_{12} KD_{21}) w(t) + D_{12} \bar{u}(t), \\
y(t) = C_2 x(t) + D_{21} w(t).
\] (3.12)

The feedback matrix \(K \) will be constructed in a way that system (3.12) has index one. Then we are able to apply the results of the previous section. If (1.2) is a controller for (3.12) then a controller for the system (1.1) is given by

\[
\dot{E} \dot{x}(t) = \dot{A} \dot{x}(t) + \dot{B} y(t), \\
u(t) = \dot{C} \dot{x}(t) + (\dot{D} - K) y(t).
\] (3.13)

To proceed, we need the following results about the existence of a static output feedback \(K \) that leads to a system of index at most one.

Lemma 3.11. \([7, 9]\) Consider matrices \(C \in \mathbb{R}^{p,n}, B \in \mathbb{R}^{n,m} \) and a regular matrix pencil \(\lambda E - A \). Then there exists \(K \in \mathbb{R}^{p,m} \) such that the pencil \(\lambda E - (A + B KC) \) is regular and has index at most one if and only if the triple \((E, A, B)\) is impulse controllable and the triple \((E,A,C)\) is impulse observable, see Definition 2.3.

To make use of this result, we show that a static output feedback does not change the assumptions \(A1) - A4) \).

Lemma 3.12. Consider system (1.1) and let \(K \in \mathbb{R}^{m_2,p_2} \) such that the pencil \(\lambda E - (A + B_2 KC_2) \) is regular. Then for every \(l \in \{1, 2, 3, 4\} \) the system (1.1) satisfies \(A1) \) if and only if the system (3.12) satisfies \(A1) \).

Proof. The invariance of strong stabilizability and strong detectability under output feedback is trivial. The proof for the equivalence of the corresponding assumptions \(A2) \) follows from the identity

\[
\begin{bmatrix}
A - i \omega E & B_2 \\
C_1 & D_{12}
\end{bmatrix}
\begin{bmatrix}
I_{n} & 0 \\
K C_2 & I_{m_2}
\end{bmatrix}
= \begin{bmatrix}
A + B_2 KC_2 - i \omega E & B_2 \\
C_1 + D_{12} KC_2 & D_{12}
\end{bmatrix},
\]

while the equivalence statement for \(A3) \) can be shown analogously. The fact that (3.12) satisfies \(A4) \) if and only if (1.1) satisfies \(A4) \) is a consequence of

\[
\begin{bmatrix}
T_{\infty}^T A S_{\infty} & T_{\infty}^T B_2 \\
C_1 S_{\infty} & D_{12}
\end{bmatrix}
\begin{bmatrix}
I_{n-r} & 0 \\
K C_2 S_{\infty} & I_{m_2}
\end{bmatrix}
= \begin{bmatrix}
T_{\infty}^T (A + B_2 KC_2) S_{\infty} & T_{\infty}^T B_2 \\
(C_1 + D_{12} KC_2) S_{\infty} & D_{12}
\end{bmatrix}.
\]

In the following Lemma we show that the sets introduced in Definitions 3.1–3.3 and 3.5 are invariant under output feedback as well.

Lemma 3.13. Consider the system (1.1) and let \(K \in \mathbb{R}^{m_2,p_2} \) be such that the pencil \(\lambda E - (A + B KC) \) is regular. Let \(\Gamma_H, \Gamma_J, \Gamma_H^L, \Gamma_J^L, \Gamma_H^R, \Gamma_J^R, \Gamma_H^L, \Gamma_H^R \) and \(\Gamma_J^L, \Gamma_J^R \) be the sets introduced in Definitions 3.1–3.3 and 3.5 and let \(\mathcal{Y}(\gamma) \) be the matrix introduced in (3.5). Furthermore, let \(\Gamma_{H,K}, \Gamma_{J,K}, \Gamma_{H,K}^L, \Gamma_{J,K}^L, \Gamma_{H,K}^R, \Gamma_{J,K}^R, \Gamma_{H,K}^L, \Gamma_{J,K}^L \) and \(\mathcal{Y}_K(\gamma) \) be the corresponding quantities for the system (3.12). Then,

\[
\Gamma_{J,K} = \Gamma_H, \quad \Gamma_{H,K}^L = \Gamma_H^L, \quad \Gamma_{H,K}^R = \Gamma_H^R, \quad \Gamma_{H,K}^L = \Gamma_H^L, \\
\Gamma_{J,K} = \Gamma_J, \quad \Gamma_{J,K}^L = \Gamma_J^L, \quad \Gamma_{J,K}^R = \Gamma_J^R, \quad \Gamma_{H,K} = \Gamma_H, \quad \text{rank } \mathcal{Y}(\gamma) = \text{rank } \mathcal{Y}_K(\gamma).
\]
Proof. Let $\lambda N_{H,K} + M_{H,K}(\gamma)$ be the even pencil associated to the system (3.12). Then, with the transformation matrices

$$T_{H,K} = \begin{bmatrix} I_n & 0 & 0 & 0 & 0 \\ 0 & I_n & 0 & 0 & 0 \\ 0 & 0 & I_{m_1} & 0 & 0 \\ KC_2 & 0 & KD_{21} & I_{m_2} & 0 \\ 0 & 0 & 0 & 0 & I_{p_1} \end{bmatrix}, \quad T_{J,K} = \begin{bmatrix} I_n & 0 & 0 & 0 & 0 \\ 0 & I_n & 0 & 0 & 0 \\ 0 & 0 & I_{p_1} & 0 & 0 \\ K^T B_2^T & 0 & K^T D_{12}^T & I_{p_2} & 0 \\ 0 & 0 & 0 & 0 & I_{m_1} \end{bmatrix},$$

we have the identities

$$\lambda T_{H,K}^T N_H T_{H,K} + T_{H,K}^T M_{H}(\gamma) T_{H,K} = \lambda N_{H,K} + M_{H,K}(\gamma),$$

$$\lambda T_{J,K}^T N_J T_{J,K} + T_{J,K}^T M_{J}(\gamma) T_{J,K} = \lambda N_{J,K} + M_{J,K}(\gamma).$$

Thus, we have that the pencils $\lambda N_{H,K} + M_{H}(\gamma)$ and $\lambda N_{H,K} + M_{H,K}(\gamma)$ have the same index and eigenvalues. Similarly, this holds for $\lambda N_{J,K} + M_{J}(\gamma)$ and $\lambda N_{J,K} + M_{J,K}(\gamma)$. Therefore we have $\gamma_{H,K} = \gamma_{H}, \gamma_{J,K} = \gamma_{J}$, $\gamma_{H,K} = \gamma_{H}$, $\gamma_{J,K} = \gamma_{J}$. The relations $\gamma_{H,K}, \gamma_{J}, \gamma_{H}, \gamma_{J}$ follow from the facts that

$$\text{im} \begin{bmatrix} X_{H,1}^T & X_{H,2}^T & X_{H,3}^T & X_{H,4}^T & X_{H,5}^T \end{bmatrix}^T,$$

$$\text{im} \begin{bmatrix} X_{J,1}^T & X_{J,2}^T & X_{J,3}^T & X_{J,4}^T & X_{J,5}^T \end{bmatrix}^T$$

are semi-stable deflating subspaces of $\lambda N_{H,K} + M_{H,K}(\gamma)$ and $\lambda N_{J,K} + M_{J,K}(\gamma)$, respectively, if and only if

$$\text{im} \begin{bmatrix} X_{H,1}^T & X_{H,2}^T & X_{H,3}^T & (X_{H,4} + KC_2 X_{H,1} + KD_{21} X_{H,3})^T & X_{H,5}^T \end{bmatrix}^T,$$

$$\text{im} \begin{bmatrix} X_{J,1}^T & X_{J,2}^T & X_{J,3}^T & (X_{J,4} + K^T B_2 X_{J,1} + K^T D_{12} X_{H,3})^T & X_{J,5}^T \end{bmatrix}^T$$

are semi-stable deflating subspaces of $\lambda N_{H} + M_{H}(\gamma)$ and $\lambda N_{J} + M_{J}(\gamma)$. From (3.14), we further obtain that $Y(\gamma) = Y_K(\gamma)$ and thus, their ranks coincide.

With these auxiliary results, we are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4. First we apply an a priori feedback $K \in \mathbb{R}^{m_2,p_2}$ to (1.1) such that the resulting system (3.12) has index at most one. Then we know from (3.14) that for the corresponding matrices $X_{H,1}, X_{H,2}, X_{J,1}, X_{J,2}$ of (1.1) and (3.12) are equal. Since Theorem 3.4 holds for systems of index one, the assertion follows.

Lemma 3.13 also implies that the assertion of Proposition 3.6 still holds for the general case, i.e., for (1.1), the inequality $0 \leq \hat{\gamma} \leq \check{\gamma}$ is valid. In the case where $\hat{\gamma} < \check{\gamma}$, we have $\hat{\gamma} = \check{\gamma} < \hat{\gamma}$ and if $\check{\gamma}$ exists, then $\check{\gamma} \geq \hat{\gamma}$.

With the described framework, we can now formulate the main result for the modified H_∞ control problem for descriptor systems.

THEOREM 3.14. Consider system (1.1) and the even pencils $\lambda N_{H} + M_{H}(\gamma)$ and $\lambda N_{J} + M_{J}(\gamma)$ as in (3.1) and (3.2), respectively. Suppose that assumptions A1) – A4) hold.

Then there exists an internally stabilizing controller such that the transfer function from w to z satisfies $T_{zw} \in H_{\infty}^{p_2,m_1}$ with $\|T_{zw}\|_\infty < \gamma$ if and only if γ is such that the conditions C1) – C4) hold.

Furthermore, the set of γ satisfying the conditions C1) – C4) is nonempty.
Proof. Due to Lemma 3.11, there exists a matrix $K \in \mathbb{R}^{m \times p}$ such that the system (3.12) has index at most one. Lemma 3.12 implies that (3.12) satisfies $A1 – A4$ as well. Furthermore, by Lemma 3.13, the validity of the conditions $C1 – C4$ for the system (1.1) are equivalent to the respective conditions for system (3.12).

Proposition 3.10 then implies that conditions $C1 – C4$ for (3.12) are fulfilled if and only if there exists a desired controller for (3.12).

Since an application of the controller (1.2) to (3.12) results in the same closed loop system as controlling (1.1) with (3.13), the desired result follows immediately.

Theorem 3.15. Consider system (1.1) and suppose that assumptions $A1 – A4$ hold. Then the set Γ^ρ is non-empty and optimal γ for the modified optimal H_∞ control problem is given by

$$\gamma_{mo} = \hat{\gamma}^\rho.$$ \hspace{1cm} (3.15)

Proof. Let Γ be the set of $\gamma > 0$ for which an internally stabilizing controller exists such that the transfer function from w to z satisfies $\|T_{zw}\|_\infty < \gamma$.

We know from Theorem 3.14 that Γ is non-empty and for some $\gamma > 0$, we have $\gamma \in \Gamma$ if and only if the conditions $C1 – C4$ are fulfilled. By the definition of $\Gamma_H, \Gamma_J, \Gamma^R$ and Γ^ρ, the existence of a controller with desired properties is therefore equivalent to

$$\gamma \in \Gamma_H \cap \Gamma_J, \quad \gamma \in \Gamma^R, \quad \gamma \in \Gamma^\rho.$$ \hspace{1cm} (3.16)

Especially, we have that Γ^ρ is non-empty. By the definition of $\hat{\gamma}, \hat{\gamma}^R$ and $\hat{\gamma}^\rho$, condition (3.16) is the same as

$$\gamma > \hat{\gamma}, \quad \gamma > \hat{\gamma}^R, \quad \gamma \in \hat{\gamma}^\rho.$$ \hspace{1cm} (3.17)

Hence, $\gamma \in \Gamma$ is equivalent to

$$\gamma > \max\{\hat{\gamma}, \hat{\gamma}^R, \hat{\gamma}^\rho\}.$$ \hspace{1cm} (3.18)

However, since by Lemma 3.13 we have that Proposition 3.6 still holds for arbitrary descriptor systems, the equation $\hat{\gamma}^\rho = \max\{\gamma, \hat{\gamma}^R, \hat{\gamma}^\rho\}$ holds. Thus we have that $\gamma_{mo} = \inf\Gamma = \hat{\gamma}^\rho$.

4. Numerical Example. To illustrate the functionality of our approach, consider the following example from [38] which is also discussed in [31]. The descriptor system is given by (1.1) with $D_{21} = 1, D_{11} = D_{22} = 0$ and

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$$

$$C_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \quad D_{12} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

This system is of index 2 and the associated pencils $\lambda N_H + M_H(\gamma)$ and $\lambda N_J + M_J(\gamma)$ have index 1 for $\gamma \neq 0$. The goal is to find the minimum value γ that satisfies the conditions $C1 – C4$. Using our experimental code for the computation of stable deflating subspaces of structured matrix pencils as in [2] and a bisection to determine the optimal value for gamma, we computed γ_{opt} given by $\gamma^\rho = 0.7678$, which is smaller than the sub-optimal value obtained in [31, 38].
Conclusion. In this paper we have developed conditions for optimal and suboptimal H_{∞} control for descriptor systems of arbitrary index. We have expressed criteria for the existence of an internally stabilizing controller in terms of even pencils containing only parameters of the original system. With these criteria the γ-iteration can be performed in a numerically stable way, especially if a structure preserving method is used for the computation of the deflating subspaces. The computation of a controller for a given γ can be performed following the steps in the proofs and then using controller formulas for standard systems [10,14,15]. However this approach does not lead to controller formulas stated in terms of the original system variables. In [21] such formulas are given for systems with nonsingular system matrix E, the general case is currently under investigation.

REFERENCES