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One of the most fertile geometrical examples in mathematics is the Hopf
mapping from the 3-sphere s3 to the 2-sphere $2. On the occasion of
the Conference on Computers in Geometry and Topology at the Univer-
sity of Illinois at Chicago, we considered three aspects of this mapping
which are particularly well suited to investigation by computer graphics.

The study of Hamiltonian dynamical systems can be motivated and
illustrated by a linear system which leads to the Hopf fibers as circular
orbits lying on a constant energy 3-sphere. This aspect has been re-
ported at length elsewhere in the article of Hiiseyin Kocak, Fred Bis-
shopp, David Laidlaw, and the author [1].

Regular polytopes in 4-space can be decomposed into rings of poly-
hedra which correspond to solid tori which are preimages of cells on
the 2-sphere under the Hopf mapping. This aspect has appeared in
the author's article in the proceedings of the conference Shaping Space
[21.

The third topic considered was an elementary presentation of a re-
markable construction by Ulrich Pinkall which determines the conformal
structures of tori obtained by lifting a closed curve on s? under the
Hopf mapping. This short note is an exposition of Pinkall's result
which is well-suited to interactive computer graphics investigation.

In [3], Pinkall showed that the inverse image under the Hopf map-
ping of a simple closed curve on s2 is a flat torus on s3 which is con-
formally equivalent to a parallelogram in the plane with basis vectors
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(0,1) and (L/2,A/2), where L is the length of the curve and A is the
(oriented) area it encloses on sZ, Stereographic projection then yields
embedded tori in R3 of the same conformal type. This result gives an
explicit solution to a problem first solved by Adriano Garsia using meth-
ods which were nonconstructive and not suited for the production of
examples.

Pinkall's elegant approach utilizes quaternionic multiplication on S3,
arc length parametrization of a curve on S“Z, choice of a lifting of the
curve which is orthogonal to the Hopf fibers, and calculation of the
area by integration of a curvature form on a circle bundile. His article
is illustrated by computer-generated line images. In order to investi-
gate these Hopf tori by means of interactive computer graphics, it seems
more convenient to use Cartesian coordinates, arbitrary parametrization
of the base curve, a specific lift not necessarily orthogonal to the fi-
bers, and an explicit calculation of the area. Fortunately it is possible
to carry out Pinkall's argument without introducing any of the technical
apparatus of modern differential geometry, thereby producing a prodf
which, though less elegant, is more elementary, and accessible to stu-
dents with a knowledge of the classical geometry of curves and sur-
faces. In this note we give such a direct presentation, tc;gether with
a set of illustrations indicating the way the stereographic brojections of
Hopf tori transform under inversions.

We will only need curves on the 2-sphere which are polar coordi-
nate function graphs, X(8) = (cos(8)sin(¢(8)), sin(6)sin(¢(6)), cos(¢4(8))),
where 0 < 6 < 2v and where ¢(8) is a differentiable function of 8 with
period 2m and 0 < ¢(8) < n. (Note that these are the coordinates used
in astronomy, with ¢ measured down from the North Pole, rather than
standard geographical coordinates measuring latitude up and down from
the Equator.)

The velocity vector of the curve is given by

X'(8) = (—sin(6)sin(¢(8)) + cos(8)cos($(8))¢'(6),
cos(8)sin(¢(8)) + sin(e)cos(¢(8))¢'(8), —sin(¢(8))9'(8))

Thus the length L(t) is the integral of VXy « X4 = V[sin2(¢(8)) + (¢'(8))2]

from 0 to t.
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Figure 1

The area A(t) of the wedge from the North Pole down to X(0),
along the curve to X(t), and back up to the pole, is the integral of

the area element (see Figure 1)
|xe x X¢| = sin($)

SO
t e(9) - t
A(t) = J J " sin(¢)deds = J (1 — cos(¢(8))de
0 -0 0

To parametrize the unit 3-sphere 83, we introduce "toral" coordinates
Z(a,B,y) = (cos(a)sin(y),sin(a)sin(y), cos(B)cos(y),sin(B)cos(y)), where
0<a, B<2rand 0 < v < /2. The Hopf mapping sends a point (X,
y,u,v) in R? to the point H(x,y,u,Vv) = (2xu + 2yv, —2xv + Zyu,u2 +
v2 — x2 — y2) in R®. Thus H(Z(a,8,v)) = (cos(a — B)sin(2y),

sin(e = B)sin(2y), cos(2y)), and the image of S3 under H is the 2-
sphere s2. The preimage of any point (cos(6)sin(¢),sin(98)sin(¢),
cos(¢)) is then an entire curve Z(6 + ¥,¥,¢/2) = (cos(® + P)sin(¢/2),
sin(e + y)sin(¢/2),cos()cos(¢/2),sin(p)cos(¢/2)), where 0 < ¥ < 2m. It
is easy to show that the preimage of any point is a great circle on s3.
If X(8) is a closed curve on s2 defined by a function ¢(6), then these
circles fit together to form a torus in S3, called a Hopf torus. For ex-
ample, if the curve X(6) is given by the function ¢(¢) = 2c, a constant,
then the Hopf torus is (cos(6 + ¥)sin(e),sin(8 + y)sin(c),cos(yp)cos(c),
sin(y)cos(c)), a product torus Z(6é + ¢,¥,2c) on s3.
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Some of the motivation for the Hopf mappihg ‘becom(;s‘ clearer if we
introduce complex coordinates on Sg, writing a 4-fup1e (x,y,u.v) as a
pair [{x + iy,u+ iv] = [z,w] of complex numbers. :I‘he flopf mapping is
then defined by sending the pair [z,w] to the ratid w/ z if z # 0 and
» if z = 0, thus giving a point on C with « adjoined; inverse stereo-
graphic projection (plus a reflection) then takes w/z t6 t2z§, ww — zz]
and takes » to [0,1]. In polar coordinates, Z(a,B,Y) = [sin(y)ei"',
cos(y)eiB], and H[sin(y)ei"‘,cos(y)eiﬁ] = [sin(2y)ei(°‘"3),cos(ZY)].

The claim is that any Hopf torus is flat, with Gaﬁg,sian curvature
identically zero. The easiest way to establish this is to show that this
surface is isometric to a specific region in the plane. We first compute

the metric coefficients of the surface Y(8,¢) = Z(8 + ¥,¥,$(0)/2):

Ye = (—sin(8 + y)sin(¢(8)/2) + cos(8 + y)cos($(6)/2)¢'(8)/2,
cos(8 + ¥)sin(¢(8)/2) + sin(s + y)cos($(8)/2)9'(8)/2,
—cos(y)sin(¢(8)/2)¢'(8)/2,

—sin(v)sin(¢(6)/2)¢'(8)/2),
Y¢ = (—sin(o + V)sin(¢(8)/2), cos(6 + V)sin(¢$(6)/2),

—sin(y)cos(¢(6)/2), cos(v)cos(¢(6)/2))

Then gy, = Yg + Yg = sin2(s(8)/2) + (0'®)/D)2, g9 = Yo+ ¥, =
sin?(¢(6)/2), and ggg = Y, + Y, = L.

We now define a planar region by W(6,y) = (L(8)/2,A(8)/2 + v).
" Then Wy = (L'(e)/2,A'(6)/2),W¢ = (0,1). The metric coefficients are
then Gyq = Wq* Wy = L'(®)2/4 + A'(0)2/4, Gyp = Wy« W, = A'(8)/2, end
Ggg = Wy, + W, = 1. First note Ggg = g99. Since A'(8)/2 = [1 —
cos(4(8))1/2 = sin2(¢(6)/2), we also have Gyg = Zj9- Finally, L'(e)2/4 +
A'(8)214 = sin?(4(8))/4 + ¢'(8)2/4 + sin(e(8)/2) = sin?(4(8)/2)cos?(4(8)/
2) + ¢'(8)2/4 + sin®(4(8)/2)sin?(4(6)/2), so Gyq

Hopf torus has precisely the same metric coefficients as a region in the

g11- Therefore the

plane bounded by two vertical segments of length 27 and two other
curves which are parallel translates of one another. This identification
space is isometric to the parallelogram with vertices at (0,0), (L/2,A/2),
(L/2 + 2v,A/2), and (0,27) (see Figure 2).

Pinkall shows that it is possible to choose curves on the sphere

which yield all possible parallelograms with third vertex in a given fun-
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damental region, so this completely solves the problem of finding tori
on the 3-sphere of given conformal types. Stereographic projection
gives embedded tori in ordinary 3-space with the same conformal types
(see Figure 3).

Added in Proof: Joel Weiner has been able to use the techniques

of this paper to extend his results on Flat Tori in s3 and Their Gauss

Maps .
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