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1. Introduction 

Let "1~:$3--4,S 2 be the Hopf fibration. Then the inverse image of any closed 
curve on S 2 will be an immersed torus in S 3 which will be called a Hopf torus. 
Using Hopf tori we prove 

Theorem 1. Every compact Riemann surface of genus one can be conformally 
embedded in the unit sphere S 3 ~ R  4 as a fiat torus. The embedding can be 
chosen as the intersection of S 3 with a quartic hypersurface in ]R 4. 

By stereographic projection of S 3 onto ~3  we obtain the following 

Corollary. Every compact Riemann surface of genus one can be conformally 
embedded in l R  3 a s  an algebraic surface of degree eight. 

Garsia [23 had shown that every compact Riemann surface (of any genus) 
can be conformally embedded in ~3  as an algebraic surface, but his method of 
proof was not constructive and he therefore did not obtain bounds for the 
degree of this surface. As another application of Hopf tori we construct new 
examples of compact embedded Willmore surfaces. A surface in ~3 is called a 
Willmore surface if it is an extremal surface for the variational functional 
I HE dA (H the mean curvature) [1]. The only examples of compact embedded 
Willmore surfaces known so far are the stereographic projections of compact 
embedded minimal surfaces in S 3 [9]. Using results of Langer and Singer [3] 
on elastic curves on S 2 we will exhibit an infinite series of compact embedded 
Willmore surfaces that do not stem from minimal surfaces in S a. 

2. Hopf tori 

The usual way to describe the Hopf map ~: S 3 ~,S 2 is to restrict the canonical 
projection of 1~2--{0} onto C P I = S  2 to the unit sphere S 3 in ~2. For our 
purpose we need a more explicit description. 
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We identify S 3 with the set of unit quaternions  {qMH, q ~ =  1} and S 2 with 
the unit  sphere in the subspace of IH spanned by 1,j and k. Let  q~-~0 denote 
the an t i au tomorph i sm of let that  fixes 1,j  and k but  sends i to - i .  Define 

rr: S 3 ~ I H  by lr(q)=glq. (1) 

Then ~z has the following propert ies :  
a) 7[ (83)=S 2. 

b) rc(ei* q)=rc(q) for all q~S 3, (oeR. 
c) The  g roup  S 3 acts isometrically on S 3 by right mult ipl icat ion and on S 2 

via q ~ q r ,  r~S 3. (2) 

~z intertwines these two actions, i.e. for all q, r e S  3 we have lr(qr)= ~(q)r .  
Let p: [a,b]-+S 2 be an immersed  curve. Choose  t): [ a , b ] ~ S  3 such that  

~zo t l = p .  Then with the nota t ion  S 1 : = I R / 2 ~  we define an immers ion  t of the 
cylinder [a, b] x S 1 into S 3 by 

t(t,  cp)=d  ~ r~(t). (3) 

x is called the Hopf cylinder corresponding to the curve p. We always assume 
that  the curve t~ is pa ramet r ized  by arclength and cuts the fibres of rc or tho-  
gonally, that  means  O'(t) has unit  n o r m  for all t and is o r thogona l  to 

x~,(t, q)) = ie "p r)(t). (4) 

Lower  indices always will denote  part ial  derivatives. Since in addi t ion ~'(t) is 
o r thogona l  to t~(t) there is a function u: [a, b] -~ span (j, k) such that  lu I = 1 and 

o'=u~. (5) 

Concerning the curve p = rc o ~ on S 2 we have 

P = ~ 0  
p ' = 2 ~ u t )  (6) 

Ip ' [=2.  

The two part ial  derivatives 
~o = ei~ it) (7) 

~s=ei~~ 

are o r thogona l  and have unit  length, hence (6) implies 

L e m m a  1. Let p be a curvilinear arc on S 2 of length L. Then the corresponding 
Hopf cylinder is isometric to [0, L/2] x S I. 

If  p is a closed curve (i.e. p(t+L/2)=p(t)  for all t) then equat ion (4) defines 
a covering of the (t, ~)-plane onto  an immersed  torus in S 3. This  torus will be 
called the Hopf torus corresponding to p. The  isometry  type of this torus 
depends not  only on the length of p but also on the "a rea  enclosed by p ' :  If  
p: [ a , b ] - ~ S  2 is any curve with p ( b ) = p ( a )  then we define the "or ien ted  area  
enclosed by p "  as A=fdV (8) 

e 
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where dV is the canonical  volume form on S 2 and c is an arbitrary 2-chain on 
S 2 such that O c = p  and ~dVe[-2rc ,  2g). A is well defined because Hz(SZ)~-Z 
and vol (S 2) = 4rr. c 

Proposition 1. Let p be a closed curve on S o of length L enclosing an oriented 
area A. Then the corresponding Hopf torus M is isometric to RlZ/F, where the 
lattice F is generated by the vectors (2~, 0) and (A/2, L/2). 

Proof Let 0 and x be defined as in (3). Then t can be considered as a 
Riemannian covering of the (t, q~)-plane onto  M. The translation in the direction 
(2re, 0) generates a group of deck transformations for this covering. The lines in 
Fig. 1 parallel to the (p-axis are mapped  by x onto fibres of re. 

L /  

F/2 2 rr Y 

F i g .  1 

The t-axis is mapped  by t onto the curve 0. We have 7r(0(L/2))=rr(0(0)) and 
hence 

I) (L/Z) = e ia t) (0) (9) 

for some 6 ~ [ - r t ,  n). It is clear that  the whole group of deck transformations 
for the covering x is generated by the translations (2re, 0) and (6, L/2). To prove 
the proposi t ion we have to show 

6=A/2.  (10) 

Note  first that  the mapping  re: $3--+S 2 can also be considered as a principal 
fibre bundle over S 2 with structure group S 1 (a "circle bundle"). We define a 
connect ion on this bundle by assigning to each x e S  3 the subspace of  TxS 3 
or thogonal  to the fibre of  rc through x. Then the curve 1) is a "hor izontal  lift" 
for p. Let ~2GA2(S 2) be the curvature 2-form of the above connection. The 
Euler number  of the circle bundle rc is 1, hence we have 

f2=2~ .  (11) 
S z 

For  reasons of symmetry  (see (c) on p. 2) f2 must be a multiple of the volume 
form dV, thus by (11) 

Q = 1/2 dV. (12) 

Now it is well known that  the curvature form of a circle bundle measures the 
non-closedness of horizontal  lifts of closed curves. In our  situation this means 

a = S f 2  (13) 
c 
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where c is any 2-chain on S 2 such that Oc=p and ~ ( 2 ~ [ - n ,  n). (The proof of 
c 

the theorem on p. 191 of [8] can be easily adapted to yield this result.) The 
proposition now follows from (8), (12) and (13). [] 

3. Algebraic flat tori in S 3 

Let 7 be an embedded closed curve on S 2 of length L and oriented area A. 
Changing the orientation on 7 changes the sign of A. So we can assume 
0 < A  <2n .  The only further restriction on (A, L) is given by the isoperimetric 
inequality on the sphere [7]: 

L 2 - 4 h A  -A2__> 0. (14) 

Equality in (14) is attained only for circles on S 2. In terms of (A/2, L/2) we can 
write (14) as 

(A/2 -7~) 2 + (L/2) 2 > 7~ 2. (15) 

Thus for each point (A/2, L/2) in the shaded region of Fig. 2 there is an 
embedded closed curve on S z with length L and area A. 

It is well known that every compact Riemann surface of genus one is 
conformally equivalent to F,2/F where F is the lattice in ~ . 2  generated by 
(2n, 0) and another vector whose endpoint lies in the doubly shaded region of 
Fig. 2. Thus we have already proved the first of the two assertions in Theo- 
rem 1. 

L/2 

! 

2rr 
Fig. 2 

> 
AI2 

Examples. 1) The point (A/2, L/2)=(n, n) corresponds to a square lattice in p2 .  
But A = L = 2 n  is attained for a great circle on S 2, hence the inverse image 
n-1(7) of a great circle 7 on S 2 under the Hopf  map n is isometric to a square 
torus. In fact one can verify that n - l (y )  is a "Clifford torus". Under a suitable 
stereographic projection n-1(7) is mapped onto a special standard torus. In 
Fig. 3 also the images of the Hopf  fibres are indicated. 



Hopf tori in S a 383 

) 
Fig. 3 

2) The point (A/2, L / 2 ) = ( ~ , V ~ n )  corresponds to a hexagonal lattice F in 
~2.  To obtain a torus which is conformally equivalent to the hexagonal torus 

~ 2 / F  we only have to chose any curve 7 on S 2 with A = 2 ~ ,  L = ] / ~  2n  and 
then consider n-l(~). One possible choice for ~ is shown in Fig. 4a). Here 7 is 
the intersection of S 2 with a cubic cone. Since 7~ is given by quadratic poly- 
nomials (see (1)) the corresponding Hopf  torus n-1(7) is the intersection of S 3 
with a hypersurface in F-. ~ of degree 6. Thus n-1(7) is algebraic of degree 12. 
The stereographic projection of S3-{northpole} onto ~ 3  can be considered as 
the restriction of a linear projection IR4-{northpole}--,lR 3. Since linear pro- 
jections preserve degree, also the stereographic projection of 7~-1(~) has alge- 
braic degree 12 (Fig. 4b). 

Fig. 4 

We now complete the proof of Theorem 1 by showing that one can achieve 
any conformal structure on n-1(7) by choosing 7 to be a suitable curve on S z 
of degree less than or equal to four. 

If the conformal structure in question corresponds to a rectangular lattice 
then we can chose 7 to be a suitable circle on S 2. In this case we have equality 
in (14) and (15). 

If the conformal structure is not rectangular then we chose a corresponding 
point (A, L) in the region U c N2 defined by the inequalities 

O<A/2  < 2 n  (16) 

] / n T T ~ / 2  - n) 2 < L/2 < 2 l / n  2 - (A/2 - n) 2. 
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This choice is possible because U contains nearly a whole fundamental region 
of the modular  group (see Fig. 2). Only the points on the circle L/2 

= } / n  2 - ( A / 2 - n )  2 are missing, which correspond however to rectangular lat- 
tices. 

Let D 1 be a circular disk on S 2 with area A and denote the length of its 
boundary circle by L 1. By (16) we have L 1 < L < 2 L 1 ,  hence O < L - L I  < L  1. Let 
D 2 be another circular disk on S 2 such that the length of 0D 2 is equal t o  L 2 

= L - L ~  and 
a r e a  (V 1 ~ D2) = 1/2 area (Dz). (17) 

It is easy to see that such D 2 always exists and that the configuration consist- 
ing of the two disks D 1, D z is uniquely defined by the above conditions up to 
congruent motions of S 2. 

Fig. 5 

) 
The union of the two boundary circles OD 1 and 6~D 2 c a n  be considered as a 

reducible quartic curve. As indicated in Fig. 5 we can perturb this reducible 
quartic slightly so as to obtain a nonsingular and connected quartic 7 whose 
length L and area A are approximately given by L and A. Obviously we can 
parametrize this perturbation by a parameter  e with 0 < e < 1 such that L and /1  
depend contineously on L, A and e. The function 

f= ( .4 ,  L): U x [0, 1)---,P, 2 (18) 

obtained in this way satisfies the condition f ( x , O ) = x  for all x e U .  Now the 
following lemma provides us with a non-singular connected quartic on S 2 with 
prescribed area and length (A, L)e U: 

Lemma  2. Let  U c ~  2 be open, f :  U x [ ' 0 , 1 ) - - * F x  2 a contineous mapping such 
that f ( x ,  O) = x for  all xE U. Then for  each x e  U there is a pair (y, e)e U x (0, 1) 
such that f (y, e) = x. 

The proof of Lemma 2 is left to the reader. 

3. Willmore tori 

We now want to determine the mean curvature of a Hopf  torus. By (5) we 
have 

xt(t, ~o) = e i~ u(t) r)(t) 

=u(t)  e-iO t)(t). (19) 
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Using (4) and (19) it can be verified that a unit normal  vector field for the 
immersion ~ is given by 

rt(t, q~) = iu(t) e -i'P tl(t). (20) 

Taking derivatives of (20) we obtain 

n , =  -2~:~ t - t ~  (21) 

H~p = - -  ~ t '  

Here we have defined ~c by the equation 

u' = 2itcu. (22) 

t~-+K(t) is the curvature  function of the spherical curve p =hrs. This can be seen 
from the identities 

(/10)' = 2/1utt 

(/1 r})" = 2/1 ( u ' - 2 ) 0 .  (23) 

(Recall that for 3~S 3 the map sending q~S  2 to ~q,~ is an isometry of $2). 
By (21) 1r is also the mean curvature of  the surface x at the point ~r q~). 

Therefore the Willmore functional ~B(M)[-1, 9] is given by 

2 B ( M ) =  ~ 1 + ~2(t) d~p dt  
F 

L 

==5  l+~2( s )  ds. 
0 

Here F is a fundamental  region for the covering ~ : P , 2 + M  and d s = 2 d t  
denotes arclength on the spherical curve p. The principle of symmetric criti- 
cality [5] is applicable here, hence ~ is an extremal surface for the functional 
if and only if p is an extremal curve for ~ 1 + ~2 ds. 

Langer  and Singer E3] have shown that there are infinitely many simple 
closed curves on S 2 that are critical points for .~ 1 + x  2 ds. Therefore there are 
infinitely many embedded H o p f  tori that are critical points for 2B. The 
stereographic projections of these tori are then embedded Willmore tori in p3 .  
Figure 6 shows such a Wil lmore torus and the corresponding curve on S 2. 

Fig. 6 
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We now want  to show that  with one exception the above examples of Wil lmore  
tori in R 3 cannot  be ob ta ined  by stereographic project ion from min imal  
surfaces in S 3. Clearly this follows from 

Proposition 2. Let M c S  3 be a Hopf  torus that is a critical point of  f~B, ~: $3---~S 3 

a conformal transformation such that c~(M) is a minimal surface in S 3. Then M is 
a Clifford torus. 

Proof  The directions of curvature  on a min ima l  surface N in S 3 are given by 
the zero directions of the real part  of a ho lomorphic  quadrat ic  differential on 
N [4]. This property is invar ian t  under  conformal  t ransformations,  hence 
under  the hypotheses of the proposi t ion the same must  hold for M. Using the 
complex coordinate  z = t +icp on M (t and ~p defined as in (3)) we can write the 
ment ioned  quadrat ic  differential on M as adz  2 for some constant  a~C.  This 
means  in part icular  that on  M the lines of curvature cut the Hopf  fibres under  
a constant  angle. Then  it can be seen from (21) that x mus t  be constant ,  that 
means  the curve 7 on S z corresponding to M is a circle. Since by our 
assumpt ions  on M this circle is a critical poin t  for the funct ional  4 1 + K  2 ds it 
must  be a great circle. [ ]  
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