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1. Introduction

Let 7: S*—>S? be the Hopf fibration. Then the inverse image of any closed
curve on $% will be an immersed torus in S* which will be called a Hopf torus.
Using Hopf tori we prove

Theorem 1. Every compact Riemann surface of genus one can be conformally
embedded in the unit sphere S?cR* as a flat torus. The embedding can be
chosen as the intersection of S* with a quartic hypersurface in R*.

By stereographic projection of S onto R® we obtain the following

Corollary. Every compact Riemann surface of genus one can be conformally
embedded in R® as an algebraic surface of degree eight.

Garsia [2] had shown that every compact Riemann surface (of any genus)
can be conformally embedded in IR* as an algebraic surface, but his method of
proof was not constructive and he therefore did not obtain bounds for the
degree of this surface. As another application of Hopf tori we construct new
examples of compact embedded Willmore surfaces. A surface in R? is called a
Willmore surface if it is an extremal surface for the variational functional
{H*dA (H the mean curvature) [1]. The only examples of compact embedded
Willmore surfaces known so far are the stereographic projections of compact
embedded minimal surfaces in S [9]. Using results of Langer and Singer [3]
on elastic curves on S? we will exhibit an infinite series of compact embedded
Willmore surfaces that do not stem from minimal surfaces in S3.

2. Hopf tori
The usual way to describe the Hopf map n: S*—S? is to restrict the canonical

projection of €%—{0} onto CP!=S? to the unit sphere S* in €2 For our
purpose we need a more explicit description.
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We identify S* with the set of unit quaternions {gelH, g7=1} and S* with
the unit sphere in the subspace of IH spanned by 1,j and k. Let g—4 denote
the antiautomorphism of IH that fixes 1,j and k but sends i to —i. Define
1:S°->Hb .

Y (@) =44. (1)
Then 7 has the following properties:

a) n(S%) =S

b) n(e!? q)=mn(q) for all geS3, peR.

¢) The group S* acts isometrically on S? by right multiplication and on N
via g-¥qr, reS>. 2)
7 intertwines these two actions, i.e. for all g, reS® we have n(qr)=Fr(q)r.

Let p:[a,b]—S2 be an immersed curve. Choose 1:[a, b]—>S> such that
mon=p. Then with the notation S':=R/2nZ we define an immersion x of the
cylinder [a, b] x S* into S* by

x(t, p) =€ n(1). (3

x is called the Hopf cylinder corresponding to the curve p. We always assume
that the curve y is parametrized by arclength and cuts the fibres of = ortho-
gonally, that means y’() has unit norm for all ¢t and is orthogonal to

x,(t, @)=ie'? n(o). (4)

Lower indices always will denote partial derivatives. Since in addition y'(f) is
orthogonal to n(t) there is a function u: [a, b] — span (j, k) such that ju|=1 and

Y =un. ®

Concerning the curve p=moy on $* we have

=19y
p'=29uy (6)
lp'l=2.
The two partial derivatives '
feme T ™
x,=e’uy

are orthogonal and have unit length, hence (6) implies

Lemma 1. Let p be a curvilinear arc on S* of length L. Then the corresponding
Hopf cylinder is isometric to [0, L/2] x S*.

If p is a closed curve (i.e. p(t+L/2)=p(t) for all t) then equation (4) defines
a covering of the (t, )-plane onto an immersed torus in S*. This torus will be
called the Hopf torus corresponding to p. The isometry type of this torus
depends not only on the length of p but also on the “area enclosed by p”: If
p:[a, b]—S? is any curve with p(b)=p(a) then we define the “oriented area

enclosed by p” as
ye A=[av (8)
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where dV is the canonical volume form on S$2 and c¢ is an arbitrary 2-chain on
§2 such that dc=p and dee[ —2m,27). A is well defined because H,(S?)~
and vol (S%)=4nm.

Proposition 1. Let p be a closed curve on S° of length L enclosing an oriented
area A. Then the corresponding Hopf torus M is isometric to R?/I, where the
lattice T is generated by the vectors (2x, 0) and (A/2, L/2).

Proof. Let 1 and x be defined as in (3). Then x can be considered as a
Riemannian covering of the (¢, ¢)-plane onto M. The translation in the direction
(27, 0) generates a group of deck transformations for this covering. The lines in
Fig. 1 parallel to the ¢-axis are mapped by z onto fibres of 7.

t 4

L/gf-===pm==emmmnmmae

N
~N
M-
3
Le\l

Fig. 1

The t-axis is mapped by x onto the curve 1. We have n(y(L/2))==(y(0)) and
hence is
n(L/2)=¢"1(0) )

for some ée[ —n, m). It is clear that the whole group of deck transformations
for the covering x is generated by the translations (27, 0) and (6, L/2). To prove

the proposition we have to show
S=A/2. (10)

Note first that the mapping n: S* »S? can also be considered as a principal
fibre bundle over S? with structure group S* (a “circle bundle”). We define a
connection on this bundle by assigning to each xeS* the subspace of T_S?
orthogonal to the fibre of = through x. Then the curve p is a “horizontal lift”
for p. Let QeA?(5?) be the curvature 2-form of the above connection. The
Euler number of the circle bundle = is 1, hence we have

{Q=2n (11
S2

For reasons of symmetry (see (c) on p.2) Q must be a mulitiple of the volume

form 4V, thus by (11)
Q=1/24dV. (12)

Now it is well known that the curvature form of a circle bundle measures the
non-closedness of horizontal lifts of closed curves. In our situation this means

5={Q 13)
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where ¢ is any 2-chain on $? such that dc=p and { Qe[ —=, 7). (The proof of

the theorem on p. 191 of [8] can be easily adapted to yield this result.) The
proposition now follows from (8), (12) and (13). O

3. Algebraic flat tori in S*

Let y be an embedded closed curve on S* of length L and oriented area A.
Changing the orientation on y changes the sign of 4. So we can assume
0=<A=<2=n. The only further restriction on (4, L) is given by the isoperimetric
inequality on the sphere [7]:

[?—4nA—A*20. (14)

Equality in (14) is attained only for circles on S2. In terms of (4/2, L/2) we can

write (14) as
(A2 —m)*+(L/2)* = 2. (15)

Thus for each point (A4/2, L/2) in the shaded region of Fig. 2 there is an
embedded closed curve on S? with length L and area A.

It is well known that every compact Riemann surface of genus one is
conformally equivalent to R?/I" where I' is the lattice in R? generated by
(27, 0) and another vector whose endpoint lies in the doubly shaded region of
Fig. 2. Thus we have already proved the first of the two assertions in Theo-
rem 1.

L72

Examples. 1) The point (A4/2, L/2)=(n, n) corresponds to a square lattice in R2
But A=L=2nr is attained for a great circle on S? hence the inverse image
7~ (y) of a great circle y on §? under the Hopf map = is isometric to a square
torus. In fact one can verify that = 1(y) is a “Clifford torus”. Under a suitable
stereographic projection n~'(y) is mapped onto a special standard torus. In
Fig. 3 also the images of the Hopf fibres are indicated.
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Fig. 3

2) The point (4/2, L/2)=(=, 1/577:) corresponds to a hexagonal lattice I" in
RR2. To obtain a torus which is conformally equivalent to the hexagonal torus
R%/I" we only have to chose any curve y on §? with 4A=2m, L=]/§ 2z and
then consider 7~ 1(y). One possible choice for y is shown in Fig. 4a). Here 7 is
the intersection of S? with a cubic cone. Since n is given by quadratic poly-
nomials (see (1)) the corresponding Hopf torus =~ '(y) is the intersection of S*
with a hypersurface in R* of degree 6. Thus n~'(y) is algebraic of degree 12.
The stereographic projection of S*-{northpole} onto R* can be considered as
the restriction of a linear projection RR*-{northpole} - IR? Since linear pro-
jections preserve degree, also the stereographic projection of n~'(y) has alge-
braic degree 12 (Fig. 4b).

Fig. 4

We now complete the proof of Theorem 1 by showing that one can achieve
any conformal structure on ©~!(y) by choosing y to be a suitable curve on §*
of degree less than or equal to four.

If the conformal structure in question corresponds to a rectangular lattice
then we can chose 7 to be a suitable circle on S2. In this case we have equality
in (14) and (15).

If the conformal structure is not rectangular then we chose a corresponding
point (A4, L) in the region U <IR? defined by the inequalities

0<A2<2xn

V2 —(A)2—n)> <Lj2<2Y/n*—(4)2—m)%.

(16)
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This choice is possible because U contains nearly a whole fundamental region
of the modular group (see Fig. 2). Only the points on the circle L/2

=1/n2 —(A/2—m)* are missing, which correspond however to rectangular lat-
tices.

Let D, be a circular disk on S? with area A and denote the length of its
boundary circle by L. By (16) we have L, <L <2L,, hence 0O<L —L, <L,. Let
D, be another circular disk on S? such that the length of 6D, is equal to L,
=L—~L, and

area(D,nD,)=1/2 area (D,). (17)

It is easy to see that such D, always exists and that the configuration consist-
ing of the two disks D,, D, is uniquely defined by the above conditions up to
congruent motions of S2.

Fig. 5

The union of the two boundary circles 0D, and dD, can be considered as a
reducible quartic curve. As indicated in Fig. 5 we can perturb this reducible
quartic slightly so as to obtain a nonsingular and connected quartic y whose
length L and area A are approximately given by L and A. Obviously we can
parametrize this perturbation by a parameter & with 0<e<1 such that L and 4
depend contineously on L, 4 and &. The function

f=(4,L): Ux[0,1)»R? (18)

obtained in this way satisfies the condition f(x,0)=x for all xeU. Now the
following lemma provides us with a non-singular connected quartic on $* with
prescribed area and length (4, L)eU:

Lemma 2. Let UcIR? be open, f: U x[0,1)~R? a contineous mapping such
that f(x,0)=x for all xeU. Then for each xeU there is a pair (y,)eU x(0,1)
such that f(y, e)=x.

The proof of Lemma 2 is left to the reader.

3. Willmore tori

We now want to determine the mean curvature of a Hopf torus. By (5) we

have )
x,(t, @)=¢""u(t) n(t)

=u(t)e™"*y(t). (19)
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Using (4) and (19) it can be verified that a unit normal vector field for the
immersion x is given by .

n(t, @)=iu(t) e * (). (20)

Taking derivatives of (20) we obtain

n=—2Kx —%,

(1)
n,=—x,.
Here we have defined « by the equation
' =2iku. (22)

t—x(t) is the curvature function of the spherical curve p=%v. This can be seen
from the identities . _

(Hy)' =29uy

(Hy)’' =2hw -2). (23)

(Recall that for 3¢ S° the map sending geS? to 3¢3 is an isometry of §2).
By (21) x(¢) is also the mean curvature of the surface x at the point x(z, ¢).
Therefore the Willmore functional TB(M)[1, 9] is given by

WM)=[1+rk>(t)depdt
F
=n?1+x2(s)ds.
o

Here F is a fundamental region for the covering x: R*—> M and ds=2dt
denotes arclength on the spherical curve p. The principle of symmetric criti-
cality [5] is applicable here, hence x is an extremal surface for the functional 28
if and only if p is an extremal curve for | 1+x?ds.

Langer and Singer [3] have shown that there are infinitely many simple
closed curves on S? that are critical points for $1+«?ds. Therefore there are
infinitely many embedded Hopf tori that are critical points for . The
stereographic projections of these tori are then embedded Willmore tori in R>.
Figure 6 shows such a Willmore torus and the corresponding curve on S2.

Fig. 6
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We now want to show that with one exception the above examples of Willmore
tori in IR*® cannot be obtained by stereographic projection from minimal
surfaces in S3. Clearly this follows from

Proposition 2. Let M < §° be a Hopf torus that is a critical point of W, o: S>—>S>
a conformal transformation such that «(M) is a minimal surface in S3. Then M is
a Clifford torus.

Proof. The directions of curvature on a minimal surface N in S* are given by
the zero directions of the real part of a holomorphic quadratic differential on
N [4]. This property is invariant under conformal transformations, hence
under the hypotheses of the proposition the same must hold for M. Using the
complex coordinate z=t+i¢p on M (t and ¢ defined as in (3)) we can write the
mentioned quadratic differential on M as adz? for some constant aeC. This
means in particular that on M the lines of curvature cut the Hopf fibres under
a constant angle. Then it can be seen from (21) that k must be constant, that
means the curve y on S? corresponding to M is a circle. Since by our
assumptions on M this circle is a critical point for the functional §>1 +xlds it
must be a great circle. [
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