Exercise Sheet 7

Exercise 1: Power series expansion. (5 pts)
Let \(f : \mathbb{C} \to \mathbb{C} \) be holomorphic (i.e. \(f \) an entire function). Let \(A, R > 0 \) and \(m \in \mathbb{N} \) be constants such that
\[
|f(z)| \leq A |z|^m \quad \text{for all } z \in \mathbb{C} \text{ with } |z| > R.
\]
Show that \(f \) is a polynomial of degree at most \(m \).

Exercise 2: Maximum Principle. (5 pts)
Let \(G \subset \mathbb{C} \) be a domain and \(K \subset G \) a compact subset with non-empty interior \(\overset{\circ}{K} \). Show that every non-constant holomorphic function on \(G \) with constant absolute value on the boundary \(\partial K = K \setminus \overset{\circ}{K} \) has a zero in \(K \).

Exercise 3: Reflection Principle. (5 pts)
Show: If \(f \) is an entire function such that \(f(\mathbb{R}) \subset \mathbb{R} \) and \(f(i\mathbb{R}) \subset i\mathbb{R} \), then \(f \) is an odd function, i.e. \(f(-z) = -f(z) \).

Exercise 4: Zeros of holomorphic functions. (5 pts)
Let \(G \) be a domain and \(f : G \to \mathbb{C} \) a holomorphic map. Let \(M := \{ z \in G \mid f(z) \subset \mathbb{R} \} \) and \(z_0 \in M \). Prove the following statements:

(i) If \(f'(z_0) \neq 0 \), then there exists a neighborhood \(V \) of \(z_0 \) in \(G \) such that \(M \cap V \) is the image of a curve \(\gamma : (0, 1) \to G \).

(ii) If \(f'(z_0) = 0 \), i.e. \(n := \text{Ord}(f - f(z_0), z_0) = \min \{ k \in \mathbb{N} \mid f^{(k)}(z_0) \neq 0 \} \geq 2 \), then there exists a neighborhood \(V \) of \(z_0 \) in \(G \) such that \(M \cap V \) is the union of \(n \) curves. Furthermore, the intersection angles of these curves at \(z_0 \) are multiples of \(\frac{2\pi}{n} \).

Bonus: (3 pts)
Calculate and draw the set \(M \) for the following maps: \(\exp, z \mapsto z^3, \sin \).

Due Friday, June 05, before the lecture.