6. Exercise Sheet – Topology

To be handed in on December 1 after the first lecture.

Homework exercise 1 5 points
Let X be a path-connected space with path-connected open subsets $A, B \subseteq X$. Suppose $X = A \cup B$, A and B are not simply connected, but $A \cap B$ is simply connected. Show that for any $x_0 \in A \cap B$ and any loop γ at the basepoint x_0 that is not homotopic to a constant loop, there is a loop γ' based at x_0 such that $\gamma \cdot \gamma' \not\simeq \gamma' \cdot \gamma$.

Homework exercise 2 5 points
Let X be a path-connected Hausdorff space and $p \in X$ a point with an open neighborhood $U \cong \mathbb{R}^d$ for some $d \geq 3$. Then for any $x_0 \in X \setminus \{p\}$ we have $\pi_1(X, x_0) \cong \pi_1(X \setminus \{p\}, x_0)$.

Homework exercise 3 5 points
Compute the fundamental group of $\mathbb{R}P^d$ for every integer $d \geq 1$.

Homework exercise 4 5 points
Compute the fundamental group of $S^2 \cup \{(x, y, z) \in \mathbb{R}^3 \mid x = y = 0\}$.