Midterm Exam – Topology

Name:

Matrikelnummer:

E-mail (optional):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You have **80 minutes** to complete this exam. There are three exercises worth 10 points each. The exam is passed successfully with **15 points** or more. You may write your solutions in either German or English. Always show that the prerequisites of theorems you use are satisfied.
Exercise 1 10 points

Let

- \(X = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid x = y = 0\} \), that is, \(X \) is \(\mathbb{R}^3 \) with a line removed,
- let \(Y = \mathbb{R}^2 \setminus \{(-1, 0), (1, 0)\} \),
- and let \(Z = S^1 \subseteq \mathbb{R}^2 \) be the unit circle.

Decide which pairs of spaces \(X, Y, Z \) are homotopy equivalent, that is, whether \(X \simeq Y \), \(Y \simeq Z \), and \(X \simeq Z \). Explain your answer.

Exercise 2 10 points

Let \(u_0 \in S^1 \) be fixed. Construct the space \(X \) by gluing a disk into the torus \(S^1 \times S^1 \) along the loop \(\{u_0\} \times S^1 \) via the map \(f: S^1 \to S^1 \times S^1, x \mapsto (u_0, x) \). For some \(x_0 \in X \) compute \(\pi_1(X, x_0) \).

Exercise 3 10 points

Let \(X = \mathbb{R}P^2 \vee \mathbb{R}P^2 \).

(a) Argue that \(\pi_1(X) \cong \mathbb{Z}/2 \ast \mathbb{Z}/2 \).

(b) Let \(Y = \mathbb{R}P^2 \vee S^2 \vee \mathbb{R}P^2 \), where a point of one copy of \(\mathbb{R}P^2 \) is identified with the north pole of \(S^2 \) and a point of the other copy of \(\mathbb{R}P^2 \) is identified with the south pole. Construct a covering map \(p: Y \to X \) and determine the subgroup \(p_*(\pi_1(Y, y_0)) \) of \(\pi_1(X, p(y_0)) \) for a basepoint \(y_0 \in Y \) of your choice.

(c) Construct the universal covering of \(X \) geometrically (for instance, as a map from a CW-complex to \(X \)).