Practice Test – Topology

The midterm exam will take place on December 17, 2:15 p.m. in MA 313. Please be there a couple of minutes early. You may bring an A4 sheet of handwritten notes. You will have 80 minutes to complete the exam.

Exercise 1 10 points

Let

- \(X = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid x = y = 0\} \cup \{(x, y, z) \in \mathbb{R}^3 \mid z = 0, x^2 + y^2 = 1\} \), that is, \(X \) is \(\mathbb{R}^3 \) with a line and a circle around this line removed,
- \(Y = \mathbb{R}^2/\sim \), where \((x, y) \sim (x', y')\) if and only if \(y = y' \) and \(x - x' \in \mathbb{Z} \), and
- let \(Z = S^1 \times S^1 \) be the torus.

Decide which pairs of spaces \(X, Y, Z \) are homotopy equivalent, that is, whether \(X \simeq Y \), \(Y \simeq Z \), and \(X \simeq Z \).

Solution. We first show that \(Y \simeq S^1 \). Denote by \(p : \mathbb{R}^2 \to Y \) the canonical quotient map, and let \(H : Y \times [0, 1] \to Y, ([x, y], t) \mapsto p(x, (1-t)y) \). This map is well-defined and a deformation retraction from \(Y \) onto \(p(\mathbb{R} \times \{0\}) \cong S^1 \). Thus \(Y \) and \(Z \) are not homotopy equivalent since \(\pi_1(Y) \cong \mathbb{Z} \neq \mathbb{Z} \times \mathbb{Z} \cong \pi_1(Z) \).

We will now show that \(X \simeq Z \). By transitivity of homotopy equivalence it also follows that \(X \not\simeq Y \).

By applying the inverse stereographic projection, \(X \) is homeomorphic to \(S^3 \) with the standard Hopf link \(L = \{(x_1, \ldots, x_4) \in S^3 \mid x_3 = x_4 = 0\} \cup \{(x_1, \ldots, x_4) \in S^3 \mid x_1 = x_2 = 0\} \) removed. It was shown in the lecture that \(S^3 \setminus L \cong \mathbb{R} \times S^1 \setminus S^1 \simeq S^1 \times S^1 \).

Exercise 2 10 points

Let \(K = [(0, 1] \times [0, 1])/\sim \), where the equivalence relation \(\sim \) is generated by \((0, y) \sim (1, y)\) and \((x, 0) \sim (1-x, 1)\), that is, \(K \) is the Klein bottle. Denote by \(p : [0, 1] \times [0, 1] \to K \) the corresponding quotient map.

Let \(U = p((\frac{1}{4}, \frac{3}{4}) \times [0, 1]) \) and \(V = p([0, \frac{1}{4}] \times [0, 1]) \cup p((\frac{3}{4}, 1] \times [0, 1]) \). Check that the prerequisites of van Kampen’s theorem are satisfied, and use it to compute the fundamental group of \(K \) from those of \(U \) and \(V \).

Solution. The set \((\frac{1}{4}, \frac{3}{4})\times [0, 1] = ((\frac{1}{4}, \frac{3}{4}) \times \mathbb{R}) \cap ([0, 1] \times [0, 1])\) is open in \([0, 1] \times [0, 1]\) by definition of subspace topology. By definition of quotient topology \(U = p((\frac{1}{4}, \frac{3}{4}) \times [0, 1]) \) is also open. The same reasoning applies to \(V \) since \([0, \frac{1}{4}] \times [0, 1] = (-1, \frac{1}{4}) \times \mathbb{R}) \cap ([0, 1] \times [0, 1])\) and \((\frac{3}{4}, 1] \times [0, 1] = ((\frac{3}{4}, 2) \times \mathbb{R}) \cap ([0, 1] \times [0, 1])\).

The intersection \(U \cap V = p((\frac{1}{4}, \frac{1}{2}) \times [0, 1]) \cup p((\frac{3}{4}, \frac{1}{2}) \times [0, 1]) \) has at most two path-components as continuous image of two path-connected sets. In fact, \(U \cap V \) has only one path-component. To see this it suffices to find a path from a point in \(p((\frac{1}{4}, \frac{1}{2}) \times [0, 1]) \) to a point in \(p((\frac{3}{4}, \frac{1}{2}) \times [0, 1]) \). Let \(\gamma_1 : [0, 1] \to [0, 1] \times [0, 1], t \mapsto ((\frac{1}{2}, t), (1-t)\frac{1}{2}) \) and \(\gamma_2 : [0, 1] \to [0, 1] \times [0, 1], t \mapsto (\frac{7}{10}, t\frac{1}{2}) \). Then \((p \circ \gamma_1) \cdot (p \circ \gamma_2)\) is such a continuous path.

The set \(U \) deformation retracts to \(p((\frac{1}{2}) \times [0, 1]) \cong S^1 \), and \(V \) deformation retracts to \(p([0) \times [0, 1]) \cong S^1 \). The intersection deformation retracts to \(p((\{\frac{1}{2}\} \times [0, 1]) \cup (\{\frac{7}{10}\} \times [0, 1]) \) \cong S^1. Thus \(\pi_1(U) \cong \langle a \rangle \), \(\pi_1(V) \cong \langle b \rangle \), and \(\pi_1(U \cap V) \cong \langle c \rangle \). Denote by \(\iota_U : U \cap V \to U \) and \(\iota_V : U \cap V \to V \) the inclusions. Then \((\iota_U)_*(c) = a^2 \) and \((\iota_V)_*(c) = b^2 \).
Exercise 3 10 points

Let X be the space obtained from an n-gon (that is a 2-cell bounded by n 1-cells) by identifying all edges with the same orientation around the n-gon.

(a) Argue that $\pi_1(X, x_0) \cong \mathbb{Z}/n$.

(b) Let X be the space that is obtained from n disjoint disks by identifying them all by the identity along their boundaries. Construct a covering map $q: X \to X_n$.

Hint: It might be helpful to think about the case $n = 2$ first.

(c) If n is even let $G = \{2k \mid k \in \mathbb{Z}/n\}$. Construct a covering map $p: Y \to X_n$ of X_n such that $p_*(\pi_1(Y, \bar{x}_0)) = G$.

Solution.

(a) The space X_n is a CW-complex with one 0-cell, one 1-cell, and one 2-cell. A small neighborhood U of the 1-cell is homotopy equivalent to S^1 since both endpoints are joined to the same 0-cell. The space X_n is covered by the open set U and the 2-cell, which is also open. Their intersection is path-connected. Let the loop that goes around the edge once in positive direction be γ and $a = [\gamma] \in \pi_1(U)$. Then by van Kampen’s theorem the fundamental group of X_n is generated by a (since the 2-cell is simply connected, there are no additional generators) has the relation $a^n = 1$. Thus $\pi_1(X_n) \cong \langle a \mid a^n \rangle \cong \mathbb{Z}/n$.

(Alternatively, cite the exercise class where we computed the effect on the fundamental group of attaching a 2-cell to a CW-complex.)

(b) Map the first disk to the 2-cell of X_n. Map the k-th disk to the 2-cell in the same way but first turn by an angle of $2\pi k/n$. This is an n-fold covering as each point in the interior of the 2-cell has an open neighborhood that is evenly covered by n copies of this neighborhood in the n disks. A point on a 1-cell or 0-cell has a neighborhood that is homeomorphic to n half-disks glued together along their bounding diameter. They are evenly covered by n homeomorphic sets in X, one for each edge of X.

A precise construction is, for example, the following: Let $D \subseteq \mathbb{C}$ be the closed unit disk in the complex plane. Define the map $q_k: D \to D, x \mapsto e^{2\pi i k/n}x$ for each $k = 1, \ldots, n$. Denote the n-gon by P and fix a homeomorphism $h: D \to P$. Let $\Phi: P \to X_n$ and $\Psi: \bigsqcup_{i=1}^n D \to X$ be the canonical quotient maps. The maps q_k induce a map $q': \bigsqcup_{i=1}^n D \to X_n$ by mapping x in the k-th copy of D to $\Phi(h(q_k(x)))$.

Since $q'(x) = q'(y)$ if $\Phi(x) = \Phi(y)$ for $x, y \in \bigsqcup_{i=1}^n D$, the map q' induces a well-defined map on the quotient $q: X \to X_n$.

(c) The space Y is a quotient of X where all even numbered disks and all odd numbered disks are identified with one another, respectively. Let Y be S^2 with the equator partitioned into n equal parts such that every other part is identified. More precisely, let S^2 be the unit sphere in $\mathbb{C} \times \mathbb{R}$. Then $Y = S^2/\sim$, where the equivalence relation \sim is generated by $(z,0) \sim (e^{2\pi i \frac{2}{n}} z,0)$.

The map p maps the upper hemisphere homeomorphically onto the 2-cell of X_n and maps the lower hemisphere in the same way after first turning by an angle of $\frac{2\pi}{n}$.

A different way to think about coverings of CW-complexes is the following: the group G has index 2 in \mathbb{Z}/n, that is, the quotient group $(\mathbb{Z}/n)/G$ has two elements. Thus, Y must be a double covering of X_n. The space Y can be constructed as a CW-complex by lifting the cell complex structure on X_n.

Since X_n has one 0-cell, Y has two 0-cells. Likewise, Y has two 1-cells e_1 and e_2 that both connect the two 0-cells and two 2-cells. Both 2-cells are glued into the circle determined by e_1 and e_2 via a map that wraps m times around this circle, where $n = 2m$. Notice that $\pi_1(Y) \cong \mathbb{Z}/m$. Since p_* is always injective, its image is isomorphic to \mathbb{Z}/m. Thus, p_* is always injective, its image is isomorphic to $\mathbb{Z}/m < \mathbb{Z}/n$.

The covering map sends both 0-cells to the 0-cell of X_n. It sends the 1-cells homomorphically to the 1-cell of X_n. This results in a map that wraps the circle determined by e_1 and $e_2 n$ times around the 1-cell of X_n. Since in X_n there is a 2-cell glued into the 1-cell by wrapping around n times, this map is nullhomotopic and can be extended to the entire disk. This defines the covering map on all of Y.
