Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 2

(Manifolds, diffeomorphisms)

due 08.11.2016

Exercise 1

Let $\mathbb{R}^n/\mathbb{Z}^n$ denote the quotient space $\mathbb{R}^n/_{\sim}$ with equivalence relation given by

$$x \sim y :\Leftrightarrow x - y \in \mathbb{Z}^n.$$

Let $\pi \colon \mathbb{R}^n \to \mathbb{R}^n / \mathbb{Z}^n$, $x \mapsto [x]$ denote the canonical projection. Show:

- a) π is a covering map, i.e. a continuous surjective map such that each point $p \in \mathbb{R}^n / \mathbb{Z}^n$ has a open neighborhood V such that $\pi^{-1}(V)$ is a disjoint union of open sets each of which is mapped by π homeomorphically to V.
- b) π is an open map.
- c) $\mathbb{R}^n/\mathbb{Z}^n$ is a manifold of dimension n.
- d) $\{(\pi|_U)^{-1} \mid U \subset \mathbb{R}^n \text{ open, } \pi|_U : U \to \pi(U) \text{ bijective}\}$ is a smooth atlas of $\mathbb{R}^n/\mathbb{Z}^n$.

Exercise 2

Show that the following manifolds are diffeomorphic.

- a) $\mathbb{R}^2/\mathbb{Z}^2$.
- b) the product manifold $\mathbb{S}^1 \times \mathbb{S}^1$.
- c) the torus of revolution as a submanifold of \mathbb{R}^3 :

$$T = \left\{ \left((R + r \cos \varphi) \cos \theta, (R + r \cos \varphi) \sin \theta, r \sin \varphi \right) \mid \varphi, \theta \in \mathbb{R} \right\}.$$

Exercise 3

Show that the Möbius band (without boundary)

$$\mathbf{M} = \left\{ ((2 + r\cos\frac{\varphi}{2})\cos\varphi, (2 + r\cos\frac{\varphi}{2})\sin\varphi, r\sin\frac{\varphi}{2}) \mid r \in (-\frac{1}{2}, \frac{1}{2}), \, \varphi \in \mathbb{R} \right\}$$

is a submanifold of \mathbb{R}^3 . Show further that for each point $p \in \mathbb{R}P^2$ the open set $\mathbb{R}P^2 \setminus \{p\} \subset \mathbb{R}P^2$ is diffeomorphic to M.

7 points

4 points

4 points