TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Pinkall / Knöppel http://www3.math.tu-berlin.de/geometrie/Lehre/WS16/DGII/ WS 16 ## Differential Geometry II: Analysis and Geometry on Manifolds ## Exercise Sheet 3 (Diffeomorphisms, immersions, submersions) due 15.11.2016 Exercise 1 5 points Show that $G_1(\mathbb{R}^3) \subset \operatorname{Sym}(3)$ is a submanifold diffeomorphic to $\mathbb{R}P^2$. Exercise 2 5 points Let $f: \mathbb{N} \to \mathbb{M}$ be a smooth immersion. Prove: If f is moreover a topological embedding, i.e. its restriction $f: \mathbb{N} \to f(\mathbb{N})$ is a homeomorphism between \mathbb{N} and $f(\mathbb{N})$ (with its subspace topology), then $f(\mathbb{N})$ is a smooth submanifold of \mathbb{M} . Exercise 3 5 points Let $X := \mathbb{C}^2 \setminus \{0\}$. The complex projective plane is the quotient space $\mathbb{C}P^1 = X/_{\sim}$, where the equivalence relation is given by $$\psi \sim \tilde{\psi} : \Leftrightarrow \lambda \psi = \tilde{\psi}, \quad \lambda \in \mathbb{C}.$$ Consider $\mathbb{S}^3 \subset \mathbb{R}^4 \cong \mathbb{C}^2$, then the *Hopf fibration* is the map $$\pi: \mathbb{S}^3 \to \mathbb{C}\mathrm{P}^1, \quad \psi \mapsto [\psi].$$ Show: For each $p \in \mathbb{C}P^1$ the fiber $\pi^{-1}(\{p\})$ is a submanifold diffeomorphic to \mathbb{S}^1 .