TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Pinkall / Knöppel

http://www3.math.tu-berlin.de/geometrie/Lehre/WS16/DGII/

WS 16

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 3

(Diffeomorphisms, immersions, submersions)

due 15.11.2016

Exercise 1 5 points

Show that $G_1(\mathbb{R}^3) \subset \operatorname{Sym}(3)$ is a submanifold diffeomorphic to $\mathbb{R}P^2$.

Exercise 2 5 points

Let $f: \mathbb{N} \to \mathbb{M}$ be a smooth immersion. Prove: If f is moreover a topological embedding, i.e. its restriction $f: \mathbb{N} \to f(\mathbb{N})$ is a homeomorphism between \mathbb{N} and $f(\mathbb{N})$ (with its subspace topology), then $f(\mathbb{N})$ is a smooth submanifold of \mathbb{M} .

Exercise 3 5 points

Let $X := \mathbb{C}^2 \setminus \{0\}$. The complex projective plane is the quotient space $\mathbb{C}P^1 = X/_{\sim}$, where the equivalence relation is given by

$$\psi \sim \tilde{\psi} : \Leftrightarrow \lambda \psi = \tilde{\psi}, \quad \lambda \in \mathbb{C}.$$

Consider $\mathbb{S}^3 \subset \mathbb{R}^4 \cong \mathbb{C}^2$, then the *Hopf fibration* is the map

$$\pi: \mathbb{S}^3 \to \mathbb{C}\mathrm{P}^1, \quad \psi \mapsto [\psi].$$

Show: For each $p \in \mathbb{C}P^1$ the fiber $\pi^{-1}(\{p\})$ is a submanifold diffeomorphic to \mathbb{S}^1 .