Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 4

(Vector fields, tangent bundle)
due 22.11.2016

Exercise 1

Show that each of the following conditions is equivalent to the smoothness of a vector field X as a section $X: \mathrm{M} \rightarrow \mathrm{TM}$:
a) For each $f \in \mathscr{C}^{\infty}(\mathrm{M})$, the function $X f$ is also smooth.
b) If we write $\left.X\right|_{U}=: \sum v_{i} \frac{\partial}{\partial x_{i}}$ in a coordinate chart $\varphi=\left(x_{1}, \ldots, x_{n}\right)$ defined on $U \subset \mathrm{M}$, then the components $v_{i}: U \rightarrow \mathbb{R}$ are smooth.

Exercise 2

5 points
On $\mathbb{S}^{2}=\left\{x=\left(x_{0}, x_{1}, x_{2}\right) \mid\|x\|=1\right\} \subset \mathbb{R}^{3}$ we consider coordinates given by the stereographic projection from the north pole $N=(1,0,0)$:

$$
y_{1}=\frac{x_{1}}{1-x_{0}}, \quad y_{2}=\frac{x_{2}}{1-x_{0}} .
$$

Let the vector fields X and Y on $\mathbb{S}^{2} \backslash\{N\}$ be defined in these coordinates by

$$
X=y_{2} \frac{\partial}{\partial y_{1}}-y_{1} \frac{\partial}{\partial y_{2}}, \quad Y=y_{1} \frac{\partial}{\partial y_{1}}+y_{2} \frac{\partial}{\partial y_{2}} .
$$

Express these two vector fields in coordinates corresponding to the stereographic projection from the south pole $S=(-1,0,0)$.

Exercise 3

5 points
Prove that the tangent bundle of a product of smooth manifolds is diffeomorphic to the product of the tangent bundles of the manifolds. Deduce that the tangent bundle of a torus $\mathbb{S}^{1} \times \mathbb{S}^{1}$ is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{R}^{2}$.

