TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik Pinkall / Knöppel

Mathematical School

http://www3.math.tu-berlin.de/geometrie/Lehre/WS16/DGII/

WS 16

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 9

(Riemannian manifolds, isometries)

due 17.01.2017

Definition: Let $f: M \to N$ be a diffeomorphism and $X \in \Gamma(TM)$. Then the push forward $f_*X \in \Gamma(TN)$ of X is defined by $f_*X := df \circ X \circ f^{-1}$.

Exercise 1 5 points

Let $f: M \to N$ be a diffeomorphism and $X, Y \in \Gamma(TM)$. Show: $f_*[X, Y] = [f_*X, f_*Y]$.

Exercise 2 5 points

Let (M, g) and (N, h) be Riemannian manifolds with Levi-Civita connections ∇ and $\tilde{\nabla}$, respectively. Let $f: M \to N$ be an isometry. Show that $\tilde{\nabla}_{f_*X} f_*Y = f_*(\nabla_X Y)$.

Exercise 3 5 points

- a) Show that $\langle X, Y \rangle := \frac{1}{2} \operatorname{trace}(\bar{X}^t Y)$ defines a Riemannian metric on SU(2).
- b) Show that the left and the right multiplication by a constant g are isometries.
- c) Show that SU(2) and the 3-sphere $\mathbb{S}^3 \subset \mathbb{R}^4$ (with induced metric) are isometric. Hint: SU(2) = $\{\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \mid a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1\}$.