TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Pinkall / Knöppel

http://www3.math.tu-berlin.de/geometrie/Lehre/WS16/DGII/

WS 16

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 10

(Pullbacks, isometries, geodesics)

due 24.01.2017

Exercise 1 5 points

Consider the polar coordinate map $f: \{(r,\theta) \in \mathbb{R}^2 \mid r > 0\} \to \mathbb{R}^2$ given by $f(r,\theta) := (r\cos\theta, r\sin\theta) = (x,y)$. Show that

$$f^*(x dx + y dy) = r dr$$
 and $f^*(x dy - y dx) = r^2 d\theta$.

Exercise 2 5 points

Let $f: M \to \tilde{M}$ and $g: \tilde{M} \to \hat{M}$ be smooth. Show that $f^*(g^*T\hat{M}) \cong (g \circ f)^*T\hat{M}$ and

$$(g\circ f)^*\hat{\nabla}=f^*(g^*\hat{\nabla})$$

for any affine connection $\hat{\nabla}$ on \hat{M} . Show further that, if f is an isometry between Riemannian manifolds, γ is curve in M and $\tilde{\gamma} = f \circ \gamma$, then

$$\tilde{\gamma}'' = df(\gamma'').$$

Exercise 3 5 points

Let M be a Riemannian manifold, $\gamma \colon I \to M$ be a curve which is parametrized with constant speed, and $f \colon M \to M$ be an isometry which fixes γ , i.e. $f \circ \gamma = \gamma$. Furthermore, let

$$\ker(\mathrm{id} - d_{\gamma(t)}f) = \mathbb{R}\dot{\gamma}(t), \text{ for all } t.$$

Then γ is a geodesic.