Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 10

(Pullbacks, isometries, geodesics)
due 24.01.2017

Exercise 1

Consider the polar coordinate map $f:\left\{(r, \theta) \in \mathbb{R}^{2} \mid r>0\right\} \rightarrow \mathbb{R}^{2}$ given by $f(r, \theta):=$ $(r \cos \theta, r \sin \theta)=(x, y)$. Show that

$$
f^{*}(x d x+y d y)=r d r \quad \text { and } \quad f^{*}(x d y-y d x)=r^{2} d \theta
$$

Exercise 2

Let $f: \mathrm{M} \rightarrow \tilde{\mathrm{M}}$ and $g: \tilde{\mathrm{M}} \rightarrow \hat{\mathrm{M}}$ be smooth. Show that $f^{*}\left(g^{*} \mathrm{~T} \hat{\mathrm{M}}\right) \cong(g \circ f)^{*} \mathrm{~T} \hat{\mathrm{M}}$ and

$$
(g \circ f)^{*} \hat{\nabla}=f^{*}\left(g^{*} \hat{\nabla}\right)
$$

for any affine connection $\hat{\nabla}$ on \hat{M}. Show further that, if f is an isometry between Riemannian manifolds, γ is curve in M and $\tilde{\gamma}=f \circ \gamma$, then

$$
\tilde{\gamma}^{\prime \prime}=d f\left(\gamma^{\prime \prime}\right)
$$

Exercise 3

5 points

Let M be a Riemannian manifold, $\gamma: I \rightarrow \mathrm{M}$ be a curve which is parametrized with constant speed, and $f: M \rightarrow M$ be an isometry which fixes γ, i.e. $f \circ \gamma=\gamma$. Furthermore, let

$$
\operatorname{ker}\left(\mathrm{id}-d_{\gamma(t)} f\right)=\mathbb{R} \dot{\gamma}(t), \text { for all } t
$$

Then γ is a geodesic.

