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1. n-DIMENSIONAL MANIFOLDS

1.1. Introduction. Informally, an n-dimensional manifold is a ”space” which locally (when
looked at through a microscope) looks like ”flat space” R™.

Many important examples of manifolds M arise as certain subsets M C R”, e.g.:

(1) n-dimensional affine subspaces M C R¥,
(2) S"={x e R"" |23+ 22 =1},
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(3) compact 2-dimensional submanifolds of R3
(4) SO(3) = {A € R3*3 | A'A = Id} is a 3-dimensional submanifold of R?.

Flat spaces (vector spaces = R™) are everywhere. Curved manifolds come up in Stochastics,
Algebraic Geometry, ..., Economics and Physics —e.g. as the configuration space of a pendulum
(S?), a double pendulum (S? x S?) or rigid body motion (SO(3)), or as space time in general
relativity (the curved version of flat special relativity).

1.2. Crash Course in Topology.

Definition 1 (Topological space). A topological space is a set M together with a subset O C
P(M) (the collection of all "open sets”) such that:

(1) O,M € 0O,
(2) Uy €0, € I = Uyer Uy, €0,
(3) U,...,U,€0,=UnNn---NnU, € 0.
Remark 1: Usually we suppress the the collection O of open sets and just say M is a topological

space. If several topologies and spaces are involved we use an index to make clear which topology
corresponds to which space.

Some ways to make new topological spaces out of given ones:

a) Let X be a topological space, M C X, then Oyt := {UNM | U € Ox} defines a topology on
M — called ”induced topology” or ”subspace topology”.

b) Let X be a topological space, M be a set, and 7: X — M a surjective map. Then there is
a bijection between M and the set of equivalence classes of the equivalence relation on X
defined by

x~y e n(r)=mr(y).
In other words: M can be identified with the set of equivalence classes. Conversely, given an
equivalence relation ~ on a topological space X we can form the set of equivalence classes
M = X/.. The canonical projection m: X — M is the surjective map which sends = € X to
the corresponding equivalence class [z]. The quotient topology

O ={UcM|x YU) € Ox}
turns M into a topological space. By construction 7 is continuous.

Exercise 1 (Product topology). Let M and N be topological spaces and define B := {U x V|
U € Owm,V € On}. Show that O := {UyeaU | A C B} is a topology on M x N.

Definition 2 (Continuity). Let M, N be topological spaces. Then f: M — N is called continuous
if
f7HU) € Oy for all U € Ox.

Definition 3 (Homeomorphism). A bijective map f: M — N between topological spaces is
called a homeomorphism if f and = are both continuous.

Remark 2: If f: M — N is a homeomorphism, then for U € Oy < f(U) € On. So two
topological spaces are topologically indistinguishable, if they are homeomorphic, i.e. if there
exists a homeomorphism f: M — N.

Definition 4 (Hausdorff). A topological space M is called Hausdorff if for all x,y € M with
x # y there are open sets Uy, Uy € O with U, NU, = (.

Example: The quotient space M =R/ ~ with x ~y < x —y € Q is not Hausdorff.
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Definition 5 (Second axiom of countability). A topological space M is said to satisfy the second
aziom of countability (or is called second countable), if there is a countable base of topology, i.e.
there is a sequence of open sets Uy,Us,Us, ... € O such that for every U € O there is a subset
I C N such that U = Uyer Uy,

Example: The balls of rational radius with rational center in R™ form a countable base of
topology, i.e. R™ is 2nd countable.

Remark 3: Subspaces of second countable spaces are second countable. Hence all subsets of R™
are second countable. A similar statement holds for the Hausdorff property.

Example: M = R? with O = {U x {y} | y € R, U € O} is not second countable.

Definition 6 (Topological manifold). A topological space M is called an n-dimensional topo-
logical manifold if it is Hausdorff, second countable and for every p € M there is an open set
U € O with p e U and a homeomorphism p: U =V, where V € Opn.

Remark 4: A homeomorphism ¢: U — V as above is called a (coordinate) chart of M.

Exercise 2. Let X be a topological space, x € X andn > 0. Show that the following statements
are equivalent:

i) There is a neighborhood of x which is homeomorphic to R™.
i1) There is a neighborhood of x which is homeomorphic to an open subset of R™.

Exercise 3. Show that a manifold M is locally compact, i.e. each point of M has a compact
neighborhood.

Exercise 4 (Connectedness). A topological space M is connected if the only subsets of X which
are simultaneously open and closed are X and (). Moreover, X is called path-connected if any
two points x,y € X can be joined by a path, i.e. there is a continuous map 7: [a,b] — X such
that v(0) = x and (1) = y. Show that a manifold is connected if and only it is path-connected.

Given two charts ¢: U — R™ and ¢: V — R”, then the map f: o(UNV) — (UNV) given
by f=1o (@]Um,)*l is a homeomorphism, called the coordinate change or transition map.

Definition 7 (Atlas). An atlas of a manifold M is a collection of charts {(Un, ¢a)}acr such
that M = Uger Uy

Definition 8 (Compatible charts). Two charts ¢: U — R™, 1: V. — R™ on a topological
manifold M are called compatible if f: p(UNV) = »({UNV) is a diffeomorphism, i.e. f and
=1 both are smooth.

Example: Consider M = S C R*"™!. Let B = {y € R" | |ly|| < 1}. Define charts as follows:
Fori=0,...,n,

Ul-jE = {J:ES2 | £x; > 0}, goii, : UijE — B, goli(xg,...,xn) = (20, Tiye oy Tp),

where the hat means omission. Check that p; are homeomorphisms. So: (Since S™ as a subset
of R"! is Hausdorff and second countable) S™ is an n-dimensional topological manifold. All
cpgt are compatible, so this atlas turns S™ into a smooth manifold.

An atlas {(Ua, ¥a)}aer of mutually compatible charts on M is called mazimal if every chart
(U,¢) on M which is compatible with all charts in {(U,, ¢a)}acr is already contained in the
atlas.

Definition 9 (Smooth manifold). A differentiable structure on a topological manifold M is a
mazximal atlas of compatible charts. A smooth manifold is a topological manifold together with
a mazimal atlas.
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Exercise 5 (Real projective space). Let n € N and X := R""™\ {0}. The quotient space
RP™ = X/ with equivalence relation given by

r~y =z =J)y, IER
1s called the n-dimensional real projective space. Let m: X — RP™ denote the canonical projec-
tion x — [z].
Fori=0,...,n, we define U; :==w({zx € X | x; # 0}) and ¢;: U; — R" by
[0y ..oy Zn] = (To/Tiy. .o Tiy . ooy T/ X5).
Show that

a) T is an open map, i.e. maps open sets in X to open sets in RP",
b) the maps ¢; are well-defined and {(U;, vi)}ier is a smooth atlas of RP™,
¢) RP"™ is compact. Hint: Note that the restriction of m to S™ is surjective.

Exercise 6 (Product manifolds). Let M and N be topological manifolds of dimension m and
n, respectively. Show that their Cartesian product M x N is a topological manifold of dimension
m + n. Show further that, if {(Ua,Ya)}aca is a smooth atlas of M and {(V3,v8)}seB is a
smooth atlas of N, then {(Us X V3,00 X ¥3)}(a,8)caxB is a smooth atlas of M x N. Here

Yo X Pg: Ua X Vg = pa(Ua) X 9p(Vs) is defined by vo X ¥p(p,q) = (9a(p), ¥s(q))-

Exercise 7 (Torus). Let R™/Z™ denote the quotient space R™ /.. where the equivalence relation
is given by

r~y s —y e
Let m: R™ — R™/Z", x — [z]| denote the canonical projection. Show:

a) m is a covering map, i.e. a continuous surjective map such that each point p € R™/Z"™ has
a open neighborhood V' such that 7=1(V) is a disjoint union of open sets each of which is
mapped by m homeomorphically to V.

b) 7 is an open map.

c) R"/Z" is a manifold of dimension n.

d) {(m|;)" 1 |U CR"™ open, w|;: U — n(U) bijective} is a smooth atlas of R™/Z™.

Definition 10 (Smooth map). Let M and M be smooth manifolds. Then a map f: M — M is
called smooth if for every chart (U,¢) of M and every chart (V,) of M the map

p(fHVINU) = V), == P(fle~ (2)))
18 smooth.

Definition 11 (Diffeomorphism). Let M and M be smooth manifolds. Then a bijective map
f: M — M is called a diffeomorphism if both f and f~' are smooth.

One important task in Differential Topology is to classify all smooth manifolds up to diffeomor-
phism.

Example: Every connected one-dimensional smooth manifold is diffeomorphic to R or S'. Fa-
amples of 2-dimensional manifolds: [pictures missing: compact genus 0,1,2,... Klein bottle,
or torus with holes (non-compact)] - gets much more complicated already. For 3-dimensional
manifolds there is no list.

Exercise 8. Show that the following manifolds are diffeomorphic.
a) R?/72.
b) the product manifold St x St.
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c) the torus of revolution as a submanifold of R3:

T = {((R—l—rcos«p) cosf, (R+rcosyp)sinf,rsinp) | ¢,0 € R}.

1.3. Submanifolds.

Definition 12 (Submanifold). A subset M C M in a k-dimensional smooth manifold M is
called an n-dimensional submanifold if for every point p € M there is a chart p: U =V of M
with p € U such that

o(UNM) = VN(R" x {0}) C R*.

Let us briefly restrict attention to M = R¥.
Theorem 1. Let M C R¥ be a subset. Then the following are equivalent:

a) M is an n-dimensional submanifold,

b) locally M looks like the graph of a map from R™ to R¥™, which means: For every point
p € M there are open sets V.C R™ and W C M, W 3 p, a smooth map f: V — R¥™ and a
coordinate permutation 7: R¥ — R¥ w(zy1,...,2) = (¥0,, ..., To, ) sSuch that

(W) ={(z, f(z)) |z €V},

¢) locally M is the zero set of some smooth map into R, which means: For every p € M
there is an open set U C R*, U 3 p and a smooth map g: U — R¥™™ such that

MNU ={ze€U|g(z) =0}

and the Jacobian ¢'(x) has full rank for all x € M,

d) locally M can be parametrized by open sets in R™, which means: For every p € M there are
open sets W C M, W 3 p, V. C R™ and a smooth map ¢: V — R¥ such that ¢ maps V
bijectively onto W and ¢’ (x) has full rank for all z € V.

Proof. First, recall two theorems from analysis:

e The inverse function theorem: Let U C R™ be open, p € U, f: U — R" continuously
differentiable, f’(p) # 0. Then there is a an open’ subset U c U, U > pand an open
subset V. C R™, V' 5 f(p) such that

(1) flg : U — V is bijective,

(2) f~': V = U is continuously differentiable.

We have (f71)'(q) = f'(f(g))~! for all ¢ € V. We in fact need a version where
‘continuously differentiable’ is replaced by €. Let us prove the €2 version. Then all
the partial derivatives of first order for f~! are entries of (f~!)’. So we have to prove
that ¢ — (f~1)(q) = (f')"'(f~'(g)) is continuously differentiable. This follows from
the smoothness of the map GL(n,R) > A+ A~! € GL(n,R) (Cramer’s rule), the chain
rule and the fact that f’: U — R™ ™ is continuously differentiable. The general case
can be done by induction.

e The implicit function theorem (€™ — version): Let U C R¥ be open, p € U, g: U —
R*=" smooth, g(p) = 0, ¢'(p) is surjective. Then, after reordering the coordinates
of R¥, we find open subsets V C R™?, W C R™* such that (p1,...,p,) € V and
(Pn+1y---50k) € Wand V x W C U. Moreover, there is a smooth map f: V' — W such
that {g € V x W | g(q) =0} = {(z, f(z)) [z € V}.

Proof of Theorem 1. b) = a): Let p € M. By b) after reordering coordinates in R* we find
open sets V € R*, W C R*¥™™ such that p € V x W and we find a smooth map f: V — W
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such that V x WNM = {(x, f(z)) | x € V}. Then ¢: V x W — R¥ (z,y) = (z,y — f(x)) is a
diffeomorphism and (M N(V x W)) C R™ x {0}. [picture missing]

a) = ¢): Let p € M. By a) we find an open U € R¥, U > p and a diffeomorphism ¢: U —
U c R* such that o(UNM) C R" x {0}. Now define g: U — RF™" to be the last k —n
component functions of ¢, i.e. ¢ = (p1,...,Pn, 91, -+, 9k—n)- Then MN(V x W) = g~ 1({0}).

For ¢ € V x W we have

r—n(a)
Hence ¢’ has rank k — n. ¢) = b) is just the implicit function theorem. Let us look at b) = d).
Let p € M. After reordering the coordinates by b) we have an open neighborhood of p of the
form V' x W and a smooth map f: V — W such that MN(V x W) = {(z, f(z)) | x € V}. Now
define 1: V — R¥ by +(x) = (x, f(z)). Then v is smooth

W(w) = (}?g))

So ¢'(x) has rank n for all x € V. Moreover, (V) = M x (V x W). d) = b): Let p € M.
Then by d) there are open sets V C R”, U C R¥, U 3 p and a smooth map : V — RF such
that (V) = MNU such that rank ¢/(x) is n for all z € V. After reordering the coordinates
on R* we can assume that 1 = (¢, f)t with ¢: V — R" with det @' (zo) # 0, where 1(zg) = p.
Passing to a smaller neighborhood V C V, V > p, we then achieve that p:V = o(V) is a
diffeomorphism (by the inverse function theorem). Now for all y € ¢(V') we have

B W) = < ﬁ(fll((;/)))) - (f(¢%(y)))

1.4. Examples of submanifolds in R*.

a) S" = {z € R"™! | z}+23+ - -+22 | = 1} is an n-dimensional submanifold (a hypersurface) of
R™M!, because S" = {z € R"™! | g(z) = 0}, where g: R"™ = R, g(z) = 2¥+23+---22 ;1.
We have to check that ¢/(x) has rank 1 on g~({0}): We have ¢'(z) = 2z # 0 for = # 0.

b) O(n) € R™™ = R™, O(n) = {A € R™" | A'A = I} is a submanifold of R" of dimension
n(n — 1)/2. Define g: R™"* — Sym(n) = R*"~D/2 by g(A) = A'A — I.

ail a2 -+ Qin
* a2 -+ Qln
* ¥ s+ QApp

Entries above and including the diagonal: n+ (n+1)+---+2+1 =n(n —1)/2. Need to
check that ¢’(A4): R"*"™ — Sym(n) is surjective for all A € O(n).
Interlude: Derivatives of maps f: U — R™, where U C R* open. f’(p): R¥ — R™ linear.
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How to calculate f/(p)X for X € R¥? Choose smooth 7: (—¢,&) — R¥ such that v(0) = p
and +/(0) = X. Then by the chain rule

(f o9)(0) = f(v(0))7'(0) = f'(p)X.
Solet A € O(n), X € R™", B: (—e,e) — R™" with B(0) = A, B'(0) = X (e.g. B(t) =
A+tX). Then
J(AX = 4| g(BW)= 4| _ [BOBW -1
= (BY(0)B(0) + B*(0)B'(0) = X'A + A'X.
To check that g’(A) is surjective, let Y € Sym(n) be arbitrary. So Y € R"*" Y! =Y. There
is X € RV with XA+ A'X =Y, eg. X =14Y: ~
X'A+A'X = J(YTA'A+ A'AY) =Y.

So O(n) is a submanifold dimension n? — "(";1) = "("271).

c) Consider the set G (R"™) the set of k-dimensional linear subspaces of R”. We represent a

linear subspace U C R* by the orthogonal projection Py € R™ ™ onto U. The map Py is
defined by

(1.1) Pyly =1dy, Pyly. =0,
Py has the following properties:
P% =Py, P, =Py, trPy=dimU.

In the decomposition R* = U @ U=, we have

Idy 0
PU:< oU 0).

Conversely: If P* = P, then there is an orthonormal basis of R™ with respect to which P is

diagonal.
A1

An
If further P? = P, then A\? = \; & \; € {0,1} for all i € {1,...,n}. After reordering the

basis we have
I, 0
0 0

for some k£ < n. So P is the orthogonal projection onto a k-dimensional subspace with
k = tr P. Thus we have

Gr(R") = {P € End(R") | P> = P, P* = P, trace P = k}.
We fix a k-dimensional subspace V and define
Wy = {L € End(R") | Py o L|y, invertible}.
Since Wy is open, the intersection G (R™) N Wy is open in the subspace topology.
Fix a k-dimensional subspace V' C R™. Then a k-dimensional subspace U C R" ’close’ to
V is the graph of a linear map Y € Hom(V, VJ-): With respect to the splitting R* = V@V,

U =1Im (I‘;V> ={(2z,Yz) |z eV}
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The orthogonal complement U~ of U is then parametrized over V+ by (—Y* Id1): For
€V and y € V' we have

<<Y$x> ’ <_1;y>> = (2, =Y"y) + (2, Yy) = 0.

Since rank (=Y, Idy 1) is n — k, we get

L -Y*
U~ =Im (Ide)I

Further, since the corresponding orthogonal projection Py is symmetric we can write

A B*
PU — (B C) )
with A* = A, B* = B. Explicitly A= Py o S|, B=Py. 05|, and C = P10 S|,..
From Equation (1.1) we get

v _p (I _ (A+BY -V _(—AYT B
vy ) 'Y\y ) \B+cy ) "~ U\1dy.)  \ -BY*+C )"
In particular, Y* = A~1B* and, since A is self-adjoint,
(1.2) Y = BA™ L
If we plug this relation into the equation Idy = A + B*Y we get Idy = A(Idy + Y*Y).
Since (Y*Yz,z) = (Yz,Yz) > 0 the map Idy + Y*Y is always invertible. This yields

A = (Idy + Y*Y)~!. In particular, Py € Wy NGy(R™). Further, since AY* = B*, we get
that B = Y(Idy + Y*Y)~! and, together with C = BY*, C = Y (Idy + Y*Y)~'Y*. Hence

13) . ( (Idy +Y*Y)"!  (Idy +Y*Y)"1v*

Y (Idy +Y*Y)—1 Y (Idy +Y*Y)_1Y*> € Wy NGg(R™).

Equation (1.3) actually defines a smooth map ¢: Hom(V,V+) — Wy NGr(R™) with left
inverse given by Equation (1.2), which is smooth on Wy . Hence ¢ is surjective and has full
rank. Thus Gy (R™) is locally parametrized by Hom(V, V+) 2 RF(n=k),

Theorem 2. The Grassmannian Gi(R™) of k-planes in R™ (represented by the orthogonal
projection onto these subspaces) is a submanifold of dimension k(n — k).

Exercise 9. Show that G1(R3) C Sym(3) is diffeomorphic to RP2.
Exercise 10 (Mobius band). Show that the Mdobius band (without boundary)

M= {((2+TCOS%)COS§0, (24 rcos £)sing,rsing) | r e (—%,%), % GR}

is a submanifold of R®. Show further that for each point p € RP? the open set RP?\ {p} C RP?
1s diffeomorphic to M.

2. TANGENT VECTORS

Let M be an n-dimensional smooth manifold. We will define for each p € M an n-dimensional
vector space T,M, the tangent space of M at p.

Definition 13 (Tangent space). Let M be a smooth n-manifold and p € M. A tangent vector
X at p is then a linear map

X: M) >R, f—Xf
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such that there is a smooth curve v: (—e,e) — M with v(0) = p and
Xf={(fo)(0).
The tangent space is then the set of all tangent vectors T,M := {X | X tangent vector at p}.

Let ¢ = (21,...,2) be a chart defined on U 3 p. Let f = fop ™, 4 = pov and p = ¢(p).
Then

Xf=(fo)(0)=(fo7)(0) = (0:f(B),--.,0uf(5))

So tangent vectors can be parametrized by n numbers a; = 7.(0):

Xf=adf(p)+ -+ ndnf(p).
Exercise 11. Within the setup above, show that to each vector o € R™, there exists a curve
v: (—€,€) = M such that v(0) = p and (f o¥)'(0) = a1 f(P) + -+ - + anOnf (D).
Definition 14 (Coordinate frame). If ¢ = (21,...,2y) is a chart atp € M, f € €°(M). Then

0
83% P

= 3¢(f0<,0_1)(<,0(p)), t=1,...,n

Interlude: How to construct ¥ functions on the whole of M? Toolbox: f: R — R with

0 for x <0,

f) = {e‘l/z for x > 0.

is > and so is then g(z) = f(1 — 2?) and h(z) = [y g. From h this we can build a smooth
function h: R — [0,1] with h(z) = 1 for = € [—1, 1] and h(z) =0 for z € R\ (—1,1). Then we
can define a smooth function h: R” — R by h(z) = h(z? + - - -22) which vanishes outside the

n
unit ball and is constant = 1 inside the ball of radius %

Theorem 3. Let M be a smooth n-manifold, p € M and (U,y) a chart with U > p. Let
ai,...,an € R. Then there is f € €°°(M) such that

0
8332‘

f:ai, izl,...,n.
p

g) = {f(wo(q)) J}f;?; gég

is such a function. O
Corollary 1. 8%1 Y 8% are linearly independent.
p nlp

Corollary 2. T,M C €*°(M)* is an n-dimensional linear subspace.

Proof. Follows from the last corollary and from Exercise 11, which shows that T),M is a subspace
o)
O

”781‘n

spanned by %

5 .
p p



10 ULRICH PINKALL

Theorem 4 (Transformation of coordinate frames). If (U, ) and (V,) are charts with p €
UnV, olyay = Polyqy- Then for every X € T,M,

X:Zai :Zbi

P
where ¢ = (x1,...,2n), ¥ = (Y1,...,Yn), we have

0 0
Ox; i

)
p

Gn by,

Proof. Let v: (—e,e) — M such that X f = (f ov)'(0). Let ¥ = ¢ oy and 4 = 1) 0, then

a=7%(0), b=40).
Let ®: y(UNV) — ¢(UNV) be the coordinate change ® = ¢ o 1)~1. Then
Y=poy=¢opoy=>oA.
In particular,
a=7(0) = (®09)(0) = ®'(¥(p))7'(0) = ' (+(p))b.
O
Definition 15. Let M and M be smooth manifolds, f: M — M smooth, p € M. Then define a
linear map dpf: TyM — T, M by setting for g € €°°(M) and X € T,M
dpf(X)g :=X(go [)
Remark 5: d,f(X) is really a tangent vector in TpM because, if X corresponds to a curve
v: (—e,e) = M with v(0) = p then
d d

d
dpf(X)g = atzo(wf)ov: @HQO(

)= —| goF.

o
L=,

Notation: The tangent vector X € T,M corresponding to a curve v: (—e,e) — M with
v(0) = p is denoted by X =: v/(0).
Theorem 5 (Chain rule). Suppose g: M — M, f: M — M are smooth maps. Then

dp(fog) - dg(p)fo p9-
Definition 16 (Tangent bundle). TM := Upey T, M is called the tangent bundle of M. The
map m: TM — M, T,M > X — p is called the projection map. So T,M = 7= ({p}).
Elegant version of the chain rule: If f: M — M is smooth, then df : M — M where df (X) =
dr(x)f(X). With this notation,

d(f og) = df o dg.

Theorem 6. If f: M — M is a diffeomorphism then for each p € M the map dpf: TyM —
T M is a vector space isomorphism.

Proof. f is bijective and f~! is smooth, Idy = f~1 o f. For all p € M,

Idp,m = dp(Idy) = dpp) f~ 0 dp f-
So d, f is invertible. O
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Theorem 7 (Manifold version of the inverse function theorem). Let f: M — M be smooth,
p € M with d, f: M — M invertible. Then there are open neighborhoods U C M of p and V- C M
of f(p) such that f|; : U —V is a diffeomorphism.

Proof. The theorem is a reformulation of the inverse function theorem. O

Theorem 8 (Manifold version of the implicit function theorem - ’submersion theorem’). Let
f: M — M be a submersion, i.e. for each p € M the derivative dpf:T)p M — Trep )M 18
surjective. Let ¢ = f(p) be fized. Then

“({a})

is an n-dimensional submanifold of M, where n = dim M — dim M.

Proof. Take charts and apply Theorem 1. O

Theorem 9 (Immersion theorem). Let f: M — M be an immersion, i.e. for every p € M the
differential dp f: TpM — Ty,) M is injective. Then for each p € M there is an open set U C M

with p € M such that f(U) is a submanifold of M.
Proof. Take charts and apply Theorem 1. O

Is there a global version, i.e. without passing to U € M? Assuming that f is injective is not
enough.

Exercise 12. Let f: N — M be a smooth immersion. Prove: If f is moreover a topological
embedding, i.e. its restriction f: N — f(N) is a homeomorphism between N and f(N) (with its
subspace topology), then f(N) is a smooth submanifold of M.

Exercise 13. Let M be compact, f: M — M an injective immersion, then f(M) is a submani-
fold.

Exercise 14. Let X := C?\{0}. The complex projective plane is the quotient space CP! = X/ ..,
where the equivalence relation is given by

Y~y =19, AeC.
Consider S® C R* 22 C2, then the Hopf fibration is the map
m: S = CP!, ¢ [9).
Show: For each p € CP the fiber 7=1({p}) is a submanifold diffeomorphic to S*.

3. THE TANGENT BUNDLE AS A SMOOTH VECTOR BUNDLE

Let M be a smooth n-manifold, p € M. The tangent space at p is an n-dimensional subspace of
(€>°(M))* given by
TpM = {X € (€M))" | Iy: (—e,¢) = M, 7(0) = p, Xf = (f07)'(0) = Xf,Vf € > (M)}

The tangent bundle is then the set

T™= u T,M
peM

and comes with a projection 7: TM — M, T,M 3 X ~ p € M. The set 7~1({p}) = T,M is
called the fiber of the tangent bundle at p.

Goal: We want to make TM into a 2n-dimensional manifold.
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If p = (z1,...,2,) be a chart of M defined on U > p. Then we have a basis 0 of

ox1 p7
T,M. So there are unique y;(X),...,yn(X) € R such that

X =) X aml

”78&371

Let {(Un, Pa)}aca be a smooth atlas of M. For each o € A we get an open set U, := 7' (U,)

and a function y4: U — R™ which maps a given vector to the coordinates with respect to the

frame defined by ¢a, Yo = (Ya.1,- - - Yan). Now, we define @n: 771 (U) — R® x R® = R?" by
Pa = (o © T, Ya)-

For any two charts we have a transition map ¢ns: @a(UaNUg) — ¢5(UsNUg) such that
ch]Ua nuy = Pap © Yaly, AU The chain rule yields:

yﬂ(X) = (bixﬁ((pa(ﬂ'(X)))ya(X)‘
Hence we see that ¢g o0 ¢ 1 is a diffeomorphism.

Topology on TM:

Orat == {W C TM | ¢o(W NUq) € Open for all a € A}

Exercise 15. a) This defines a topology on TM.
b) With this topology TM is Hausdorff and 2nd-countable.
c) All ¢o are homeomrophisms onto their image.

Because coordinate changes are smooth, this turns TM into a smooth 2n-dimensional manifold.

Definition 17 (Vector field). A (smooth) vector field on a manifold M is a smooth map
X:M — TM with m o X = Idy, i.e. X(p) € TyM for all p € M. Usually we write X,
instead of X(p). If X is a vector field and f € €°(M), then Xf € €°°(M) is given by
(Xf)(p) = X,f. Read: "X differentiates f”.

Exercise 16. Show that each of the following conditions is equivalent to the smoothness of a
vector field X as a section X : M — TM:

a) For each f € €°°(M), the function X f is also smooth.
b) If we write X|;; =: Zvia%i in a coordinate chart ¢ = (x1,...,xy,) defined on U C M, then
the components v;: U — R are smooth.

Exercise 17. On §? = {x = (z9,71,72) | ||z|| = 1} C we consider coordinates given by the
stereographic projection from the north pole N = (1,0 )

- %1 = %2
Y1 = 1—xg° Y2 = T—z0"

Let the vector fields X and Y on S?\ {N} be defined in these coordinates by
— 9 0 _ o) 0
X =Yag,r — Vg Y =y15,; t Y25,

Ezpress these two vector fields in coordinates corresponding to the stereographic projection from

the south pole S = (—1,0,0).

Exercise 18. Prove that the tangent bundle of a product of smooth manifolds is diffeomorphic
to the product of the tangent bundles of the manifolds. Deduce that the tangent bundle of a
torus St x S' is diffeomorphic to S' x S* x R2.
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4. VECTOR BUNDLES

Definition 18 (Vector bundle). A smooth vector bundle of rank k is a triple (E, M, 7) which
consists of smooth manifolds E and M and a smooth map w: E — M such that for each p € M
the fiber E, := w1 ({p}) has the structure of a k-dimensional vector space and each p € M has
an open neighborhood U C M such that there exists a diffeomorphism

¢: 7 HU) - U x R¥
such that myo¢ = m and for each p € M the restriction mpk o ¢|Ep s a vector space isomorphism.

Definition 19. Let E be a smooth vector bundle over M. A section of E is a smooth map
P: M — E such that mo =Idy. I'(E) :=={¢p: M — E | ¢ section of E}.

Example: a) We have seen that the tangent bundle TM of a smooth manifold is a vector
bundle of rank dim M. Its smooth sections were called vector fields.

b) The product MxRF is called the trivial bundle of rank k. Its smooth sections can be identified
with RF-valued functions. More precisely, if mo: M x RF — R then

I(M xR¥) 34 «— f:=motp € €°(M).

From now on we will keep this identification in mind.

4.1. Ways to make new vector bundles out of old ones. General principle: Any linear
algebra operation that given new vector spaces out of given ones can be applied to vector
bundles over the same base manifold.

Example: Let E be a rank k vector bundle over M and F be a rank £ vector bundle over M.

a) Then E @ F denotes the rank k + £ vector bundle over M the fibers of which are given by
(E®F),=E,&F,.

b) Then Hom(E, F) denotes the rank k-¢ vector bundle over M with fiber given by Hom(E, F),, :=
{f:Ep = Fp | f linear}.

¢) E* = Hom(E, M x R) with fibers (E*), = (Ep)*.

Let Eq,....E., F be vector bundles over M.

d) Then a there is new vector bundle Ef ® --- @ EX @ F of rank rankE; - - - rankE, - rankF with
fiber at p given by Ef, ® --- @ E}, @ Fp = {B8: Eyp x ... X E;p = Fp | 8 multilinear}.

Exercise 19. Give an explicit description of the (natural) bundle charts for the bundles (written
down as sets) in the previous example.

Starting from TM:

a) T*M := (TM)* is called the cotangent bundle.
b) Bundles of multilinear forms with all the Eq,...,E,, F copies of TM, T*M or M x R are
called tensor bundles. Sections of such bundles are called tensor fields.
Example: We have seen that G(R™) = { Orthogonal projections onto k-dim subspaces of R™}
is an (n — k)k-dimensional submanifold of Sym(n). Now, we can define the tautological bundle
as follows:
E = {(P,v) € Gx(R") | Pv =v}.
W is an open neighborhood of Py as described in the Grassmannian example. Then for (Py,v) €

E define ¢(Py,v) € W x V=W x RF by ¢(P,,v) = (Py, Pyv). Check that this defines a local
trivialization.
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Exercise 20. Let M C R* be a smooth submanifold of dimension n. Let v: M < RF denote
the inclusion map. Show that the normal bundle NM = Upen(T,M): C *TRF 22 M x R* 4s a
smooth rank k — n vector bundle over M.

Definition 20 (pullback bundle). Given a smooth map f: M — M and a vector bundle E — M.
Then the pullback bundle f*E is defined as the disjoint union of the fibers (f*E), = Eg(p, i.e.

f E:peuMEf(p) C M x E.

Exercise 21. f*E is a smooth submanifold of M x E.

Definition 21 (Vector bundle isomorphism). Two vector bundles E — M,E — M are called
isomorphic if there is a bundle isomorphism f: E — E, i.e. Tof = (fibers to fibers) and
f\EP : E, = E, is a vector space isomorphism.

Fact (without proof): Every rank k vector bundle E over M is isomorphic to f *E, where E is
the tautological bundle over G;(R™) (some n) and some smooth f: M — Gg(R™).

Definition 22. A vector bundle E — M of rank k is called trivial if it is isomorphic to the
trivial bundle M x RF,

Remark 6: If E — M is a vector bundle of rank k then, by definition, each point p € M has an
open neighborhood U such that the restricted bundle E|,; := n=1(U) is trivial, i.e. each bundle
1s locally trivial.

Definition 23 (Frame field). Let E — M be a rank k vector bundle, p1,...,pr € T'(E). Then
(P1,-.-,¢k) is called a frame field if for each p € M the vectors p1(p),...,ox(p) € Ep form a
basis.

Proposition 1. E is trivial if and only if E has a frame field.

Proof. "=": E trivial = 3F € 'Hom(E,M x R¥) such that F,: E, — {p} x R¥ is a vector
space isomorphism for each p. Then, for i = 1,...,k define ; € T'(E) by ¢, = F~1({p} x €;).
"< (01, .., pp) frame field ~ define ' € THom(E,M x R*) as the unique map such that
F,o(¢i(p)) = {p} x e; for each p € M. ~» F' is a bundle isomorphism. O

From the definition of a vector bundle: Each p € M has a neighborhood U such that E[; has
a frame field.

Theorem 10. For each p € M there is an open neighborhood U and ¢1,...,¢r € T'(E) such
that @1|y -, erly s a frame field of E|.

Proof. There is an open neighborhood U of p such that E|; is trivial. Thus there is a frame
field @1,...,¢r € T'(E|g). There is a subset U C U, a compact subset C' with U ¢ C' c U and
a smooth function f € ¢°°(M) such that f[; =1 and fypc = 0. Then, on U, we define

vi(q) = f(@)pilg), i=1,....n,
and extend it by the O-vector field to whole of M, i.e. ;(q) = 0 € E, for ¢ € M\ U. O

Example: A rank 1 vector bundle E (a line bundle) is trivial < 3 nowhere vanishing ¢ € I'(E).

Example: M C RY submanifold of dimension n ~ rank £ — n vector bundle NM (the normal
bundle of M) is given by N,M = (NM) = (T,M)* C T,R’ = {p} x R*. Fact: The normal
bundle of a Moebius band is not trivial.
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Example: The tangent bundle of S* is not trivial - a fact known as the hairy ball theorem:
Every vector field X € T'(TS?) has zeros.
Exercise 22. Show that the tangent bundle TS? of the round sphere S* C R* is trivial.

Hint: Show that the vector fields p1(z1, %2, %3,24) = (—2, 71, T4, —T3), @2(T1,T2,T3,T4) = (T3, T4, —T1, —T2)

and @3(x1,T2,x3,T4) = (—T4, T3, —T2, 1) form a frame of TS®.

5. VECTOR FIELDS AS OPERATORS ON FUNCTIONS
Let X e I'(TM), f € €°°(M). Then Xf: M — R, p — X, f, is smooth. So X can be viewed as
a linear map ¢°°(M) — €>(M),
f—=Xf.
Theorem 11 (Leibniz’s rule). Let f,g € €°(M), X € I'(TM), then X (fg) = (X f)g+ f(Xg).

Definition 24 (Lie algebra). A Lie algebra is a vector space g together with a skew bilinear
map [.,.]: g X g — g which satisfies the Jacobi identity,

(X, [V, Z]|+ Y, [Z,X]]|+ [Z,[X,Y]] = 0.
Theorem 12 (Lie algebra of endomorphisms). Let V be a vector space. End(V) together with
the commutator |.,.]: End(V) x End(V) — End(V), [A, B] := AB — BA forms a Lie algebra.
Proof. Certainly the commutaor is a skew bilinear map. Further,
(A, [B,C]] + [B,[C,A]] + [C,[A,B]] = A(BC — CB) — (BC — CB)A+ B(CA - AC)
—(CA—-AC)B+C(AB—-BA) - (AB - BA)C,
which is zero since each term appears twice but with opposite sign. ]

Theorem 13. Forall f,g € €M), X, Y e T(M), [fX,9Y] = fg[X, Y]+ [(Xg9)Y —g(Y f)X.

Lemma 1 (Schwarz lemma). Let ¢ = (x1,...,zy) be a coordinate chart. Then [a%i, a%j} =0.
Exercise 23. Prove Schwarz lemma above.
Thus, if X =5, aia%i and Y =37; bj%, we get
0 0 ob; 0O Oa; 0O Ob; Oa;\ O
X.Y] = ii,b.i — iiﬂi_b.ili — .7’_5. LI
[ ’ ] Z[a 8:62 J 895]] Z<a 8901 81‘j J 6acj 8$Z) Z<a] (%cj J 81‘j ) 8901

.3 Y] 1,J

Thus [X,Y] € I'(TM). In particular, we get the following theorem.
Theorem 14. I'(TM) C End(¢°°(M)) is a Lie subalgebra.

Exercise 24. Calculate the commutator [X,Y] of the following vector fields on R?\ {0}:

xo_* 9. v 9

VeI

Write X and 'Y in polar coordinates (r cos @, rsinp) — (r, ¢).

Definition 25 (Push forward). Let f: M — N be a diffeomorphism and X € I'(TM). The
push forward f.X € T(TN) of X is defined by f.X :=df o X o f=1.

Exercise 25. Let f: M — N be a diffeomorphism, X,Y € T'(TM). Show: fX,Y] =
[fe X, f2Y].

0 0



16 ULRICH PINKALL
6. CONNECTIONS ON VECTOR BUNDLES

Up to now we did basically Differential Topology. Now Differential Geometry begins, i.e. we
study manifolds with additional (”geometric”) structure.

Definition 26 (Connection). A connection on a vector bundle E — M is a bilinear map
V:T'(TM) x I'(E) — I'(E) such that for all f € €°(M), X € I'(TM), v € I'(E),
Vixy = fVx, Vxfy=(Xfy+ fVx.

The proof of the following theorem will be postponed until we have established the existence of
a so called partition of unity.

Theorem 15. On every vector bundle E there is a connection V.

Definition 27 (Parallel section). Let E — M be a vector bundle with connection V. Then
v € T(E) is called parallel if Vx1p =0 for all X € TM.

Let V, V be two connections on E. Define A: I'(TM) x I'(E) — I'(E) by Axt¢ = Vx¢ — Vx.
Then A satisfies

Apx) =Vyxp — Vx = fAx
and
Ax(fo) =+ = fAx¥.
Suppose we have w € 'Hom(TM, End E). Then define B: T'(TM) x I'(E) — I'(E) by
(Bxv)p = wp(Xp)(¥p) € Ep.
Then
Byxy = fBxy,  Bx(f¢)= [Bxv.
Theorem 16 (Characterization of tensors). Let E, F be vector bundles over M and A: I'(E) —
I'(F) linear such that for all f € €°(M), ¢ € I'(E) we have
A(f) = FAY).
Then there is w € THom(E, F) such that (AY)p = wyp(1p) for allp € T(E), p € M.

Proof. Let p € M, 4 € E,. Want to define w by saying: Choose 1) € I'(E) such that v, = .
Then define wp(qﬁ) = (Av)p. Claim: (Av), depends only on )y, i.e. if 9, ¥ € T'(E) with Py = 1])7,
then (Av), = (A9),, or in other words: ¢ € T'(E) with ¢, = 0 then (Ay), = 0. To check this
choose a frame field (11, ...,1) on some neighborhood and a function f € ¥°°(M) such that
fir, ..., fir are globally defined sections and f = 1 near p. Let ¢ € I'(E) with ¢, = 0. ~
Y|U = a1yhy + - -+ + agdy with aq,...,ap € €°(U). Then

FPAY = A(f2) = A(far) (fen) + -+ (Far) (fer)) = (fa) A(fen) + -+ + (far) A(for)).
Evaluation at p yields then (Av), = 0. O

Remark 7: In the following we keep this identification be tensors and tensorial maps in mind
and just speak of tensors.

Thus the considerations above can be summarized by the following theorem.

Theorem 17. Any two connections V and V on a vector bundle E over M differ by a section
of Hom(TM, End E):
V — V € l'Hom(TM, End E).
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Exercise 26 (Induced connections). Let E; and F denote vector bundles with connections V*
and V, respectively. Show that the equation

for T e T(EX®@---@E*@F) and vector fields Y; € T(E;) defines a connection V on the bundle
of multilinear forms E] ® --- @ Ef @ F.

Remark 8: Note that, since an isomorphism p: E — E between vector bundles over M maps
for each p € M the fiber of E, linearly to the fiber Ep, the map p can be regarded as a section
p € 'Hom(E, E) If moreover E is equipped with a connection V and E is equipped with a
connection V we can speak then of parallel isomorphisms: p 1s called parallel if @p = 0, where
V is the connection on Hom(E, E) induced by V and NV (compare Example 26 above).

Definition 28 (Metric). Let E — M be a vector bundle and Sym(E) be the bundle whose fiber
at p € M consists of all symmetric bilinear forms E, x E, — R. A metric on E is a section (., .)
of Sym(E) such that (.,.)p is a Euclidean inner product for all p € M. A vector bundle together
with a metric (a pair (E,(.,.))) is called Euclidean vector bundle.

Definition 29 (Metric connection). Let (E,(.,.)) be a Fuclidean vector bundle over M. Then
a connection V is called metric if for all ¢, p € T'(E) and X € T'(TM) we have

X (1, @) = (Vxih, ) + (¥, Vx ).

Exercise 27. Let V be a connection on a direct sum E = Eq @ Eo of two vector bundles over

M. Show that )
vt A
(% e

where A € Q'(M,Hom(E;, Ep)), A € Q' (M, Hom(E, E1)) and V' are connections on the bun-
dles E;.

Recall: A rank k vector bundle E — M is called trivial if it is isomorphic to the trivial bundle
M x R¥. We know that
E trivial < 3p1,...,0k € T(E): ©1(p), ..., vk(p) linearly independent for all p € M.
The trivial bundle comes with a trivial connection Ve T(M x RF) 3 ¢ <> f = mo1 €
€°°(M,RF), then V{vialyy <5 dx f = X f, X € T(TM). More precisely,
VY = (7(X), X 1),
This clarified in the following the trivial connection often will be denoted just by d.

Every vector bundle E is locally trivial, i.e. each point p € M has an open neighborhood U such
that E|; is trivial.

Definition 30 (Isomorphism of vector bundles with connection). An isomorphism between

vector bundles with connection (E,V) and (E,V) is a vector bundle isomorphism p: E — E,
which is parallel, i.e. for all X € T'(TM), ¢ € T'(E),

Vx(poy) =po (Vx).

Two vector bundles with connection are called isomorphic if there exists an isomorphism between
them. A wvector bundle with connection (E,V) over M is called trivial if it is isomorphic to the
trivial bundle (M x R¥, d).

Remark 9: Note that ¢» € T'(M x R¥) is parallel if 7 o1 is locally constant.



18 ULRICH PINKALL

Theorem 18. A vector bundle E with connection is trivial iff there exists a parallel frame field.

Proof. 7=": Let p: M x R¥ — E be a bundle isomorhism such that pod = V o p. Then

dip == p(p,ei), i = 1,...,k, form a parallel frame. ”<=": If we have a parallel frame field
@; € T(E), then define p: M x R*¥ — E, p(p,v) := S v;;(p). Tt is easily checked that p is the
desired isomorphism. O

Definition 31 (Flat vector bundle). A vector bundle E with connection is called flat if it is
locally trivial as a vector bundle with connection, i.e. each point p € M has an open neighborhood
U such that E|;; (endowed with the connection inherited from E) is trivial. In other words: If
there is a parallel frame field over U.

Definition 32 (Bundle-valued differential forms). Let E — M be a vector bundle. Then for

¢ > 0 an E-valued (-form w is a section of the bundle A*(M,E) whose fiber at p € M is the

vector space of multilinear maps TyM x --- x T,M — E,,, which are alternating, i.e. fori # j
wp(Xl,...,Xi,...,Xj,...,Xg) == —wp(Xl,...,Xj,...,Xi,...,Xg).

Further, define A°(M,E) := E. Consequently, Q°(M,E) := I'(E).

Remark 10: Each w € QY(M, E) defines a tensorial map T(TM)* — T'(E) and vice versa.

Definition 33 (Exterior derivative). Let E — M be a vector bundle with connection V. For
(>0, define the exterior derivative d¥ : Q*(M,E) — QY(M, E) as follows:

d¥w(Xo,...,Xp) =Y (-1)'Vx,(w(Xo,..., Xi, ..., X))
7
+Y (D) Mw([Xs, X], Xo, - Xy, Xy, Xg), Xo,..., X € T(TM).
1<J

Proof. Actually there are two things to be verified: dYw is tensorial and alternating. First let
us check it is tensorial:

d¥w(Xo, .o [ Xk, Xe) = D (1) Vx,w(Xo, ..., Xiy ooy fXpr ., X)
i<k
+Vix,w w(Xoy ooy Xigy ooy Xo)

+Z VXoJX[),...,ka,...,Xi,...,Xg)

i>k

+ Y (D)Me(X X X f X X X))
i<jitk,j#k

+Z H—k Xzank] Xia"'ana”'aXE)
i<k

D ([f Xk, £ X Xy, Xy X
k<i

= fde(Xo,...,ka,...,Xg)

+> (- Yw(Xo,s -, X4, Xo)
i#k

3 (D) TFO(Xa ) Xk, Koo Xy, Xo)
i<k

S DMK ) X Xy Xy, X)
k<i
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\Y
= fdvw(Xo, ..., fXp, ..., X0).

Next we want to see that dYw is alternating. Since dYw is tensorial we can test this on
commuting vector fields, i.e [X;, X;] = 0. With this we get for k < m that

d¥w(Xo, ..o, Xy oo Xy oo, Xe) = D (1) Vx,w(Xo, oo, Xiyooo, Xomy ooy Xy oo, X0)

i<k
+ (=D, w(Xo, .. Xy oo Xy, X))

+ Y ()X w(Xoy o Xy Xy Xy, Xo)
k<i<m

+ (=1)"Vx,w( X0y Xony oo Xy -+ X0)
+Z VXw XQ,...,Xm,...,Xk,...,XZ‘,...,Xg)
i>k
= - > (-1)'Vxw(Xo,. .., Xiyoo o, Xiy oo o, Xy -, X0)
i<k
+(—1)k+(mik71)Vme(X0,...,Xk,...,Xk,...,Xg)
- Y (F)Vxw(Xoy o Xee o Xiy o, Xy -, X0)
k<i<m
+(—1)m+<m—k—1>vxk (X0s-- 3 Xy ooy X5 X0)
N (1) Vx,w( X0y Kby ooy Xy oo, Xy oo, X)
i>k
_Z VXwXO,...,X,...,Xg)
i<k
=—dvw(Xo,. .., Xps o s Xy oo, X0),

where the second equation follows by successively shifting the vector fields X, resp. X to the
right resp. left. U

1-forms: Let E — M be a vector bundle with connection V, then A}(M,E) = Hom(TM, E).
We have Q°(M, E) = I'(E). We obtain a 1-forms by applying d":

Q°(M,E) 3¢ — dVeyp = Vi € QL(M, E).

As a special case we have E = M x R. Then I'(M x R) « ¥°(M) and A’(M,M x R) =
Hom(TM, M x R) <+ Hom(TM, R) = T*M. So in this case Q'(M,M x R) = T'(T*M) = Q! (M)
(ordinary 1-forms are basically sections of T*M). For M = U C R" (open) we have the standard
coordinates x;: U — R (projection to the i-component) ~ dz; € Q1(M). Let X; := 8 - € I'(TU)
which as R™-valued functions is just the canonical basis X; = e¢;. Then Xq,..., X, is a frame:
We have dz;(X;) = 95, thus dx1,...,dx, is the frame of T*U dual to X,...,X,. So every
1-form is of the form:

w=aydxy + -+ apdry,, ai,...,a, € E€°U).
If fe€>°U), then X;f = %fi. With a small computation we get

of 4 of
df 6 1 L1 + -+ Tl'ndxn
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{-forms: Let M C R™ be open and consider again E = M x R. Then for iy,...,i; define
dl’il VANCIERWA dxie € QZ(M) by
diy (X1) -+ dwi (Xy)
dl‘il/\"'/\dxiz(Xl,...,Xg) := det :
dl’iz(Xl) dl‘iz(Xg)
Note: If i, = ig for a # B, then dx;; A--- ANdz;, = 0. If o: {1,..., 0} — {1,...,¢} is a
permutation, we have

da;ial AREEWA dwiae =signo dx;, N--- ANdz;,.

Theorem 19. Let U C R" be open. The £-forms dx;, A--- ANdx;, for1 <13 <--- <iy <n are
a frame field for AY(U), i.e. each w € QYU) can be uniquely written as

w = Z Qg -, dl’il VANRRIVAN dl’iz
1<i1 < <p<n
with a;,..., € €°(U). In fact,

. w( 0 0 )
iy = 73%‘1 ey 73%‘5 .
Proof. For uniqueness note that
Sivin oo Oy
0 0 l-jl %N 1 if{ila"'aiﬁ}:{jlw"ajé}v
dwil/\-.'/\dxig(ale,...7856]'@) —det : . : = 0 else.
5iej1 T 5izje
Existence we leave as an exercise. O

Theorem 20. Let U C R" be open and w = Y 1<y <...<iy<n Qiy-vip ATiy A+ - Adz;, € QY(U), then

do= 3 Zaa“”di/\dxil/\---/\dxie.

1< <-<y<ni=1

Proof. By Theorem 19 it is enough to show that for all 1 < jo < --- < jy<n

0 0 da; 0 0
dw e = e ”dwl/\dmz o ANdxg, (.,
(axjo dxj, ) 1<11<Z:<u<n ; ' ‘ (8.1’j0 dxj, )
— 0 0
= 30 B [ T N Adxj, - ANdrj,(=—,. ., =
Z zj, Ljy, Ljo * Ljy, Lj, ((9333‘0 R ox;, )
_ ~1 k Jo Jk -Je
Z( ) “om,
But we also get this sum if we apply the definition and use that [ B 811(?7%] =0. ]

Example: Let M = U C R? be open. Then every o € Q2(M) can be uniquely written as
o = a1dxo N dxs + asdxs A drq + agdry A dxs.
Let 0 = dw with w = vidxy + vodxs + v3dxs. Then
o 0 0 0 0 0 ov;  Ov;
Ox;’ Oz, ) N 8xiw(873:j) B (??jw((%:i) B

N aCCZ an'
Thus we get that a = curl(v).

dw(
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The proofs of Theorem 19 and Theorem 20 directly carry over to bundle-valued forms.

Theorem 21. Let U C R™ be open and E — U be a vector bundle with connection V. Then
w € QYU,E) can be uniquely written as

w= Z wil"'il dxil /\ e /\ dxiga wilmig € F(E)
1<ip<<ip<n
Moreover,
n
v
d'w = ' Z 4 Z(Va%%l---u) dzi Ndxi A--- Adxg,.
1<ii<<iy<n i=1

Exercise 28. Let M = R?. Let J € T'(EndTM) be the 90° rotation and det € Q2(M) denote
the determinant. Define x: QY (M) — QY(M) by *w(X) = —w(JX). Show that

a) for all f € €°(M), d*df = (Af)det, where Af = 8872210—’_ 68722 )

b) we QL(M) is closed (i.e. dw =0), if and only if w is exact (i.e. w = df ).

7. WEDGE PRODUCT

Let U,V,W be vector bundles over M. Let w € Q¥(M,U), n € QY(M, V). We want to define

w An € QF(M, W). Therefore we need a multiplication *: U, x V, — W,, bilinear such that

for ¢ € T'(U), ¢ € I'(V) such that ¢« ¢: p — 1, %, ¢p is smooth, i.e. ¢ x ¢ € T'(W). In short,
*e (U@ V' @ W).

Example: a) Most standard case: U= M x R =V, % ordinary multiplication in R.
b) Also useful: U= M x RF*f V=M x RX™ W = M x RF*™ | x matriz multiplication.
¢) Another case: U = End(E), V=W = E, x evaluation of endomorphisms on vectors, i.e.

(Ax )y = Ap(¢p).
Definition 34 (Wedge product). Let U, V, W be vector bundles over M and x € T'(U*@V*@W).
For two forms w € QF(M,U) and n € Q°(M, V) the wedge product w An € QF(M, W) is then
defined as follows

1
wAN(X1, ..o, Xge) == T Z sgnow(Xe,,. .., Xo,) * n(XJkH, ... 7X0'k+é)’

O’ESkJrg
Example (Wedge product of 1-forms): For w,n € QY(M) we have w(X)n(Y) — w(Y)n(X).
Theorem 22. Let U, V, W be vector bundles over M, x € T(U*@V*@W), ¥ € (V*@U*®@W)
such that ¢ * ¢ = ¢4 for all o € T(U) and ¢ € T'(V), then for w € Q¥(M,U), n € QY(M, V)
we have

wAn=(=1)*nAw.

Proof. The permutation p: {1,....k+ ¢} — {1,...,k+ ¢} with (1,...,k,k+1,...,k+ () —
(k+1,....k+£,1,...,k) needs k¢ transpositions, i.e. sgnp = (—1)*. Thus
1

w/\n(Xh“.?Xk+£):W Z Sgnaw(Xal""’XJk)*n<XUk+17---aXcrk+z)
’ .O'GSk+g
1 ~
= T Z sgn o N(Xoyps- s Xoppo) F0(Xoys ooy Xoy)
’ .UGSkJFé

71 ~
- k10! Z sgi (0 0 p) 77(XUPk+1""’XUPk+e)*W(Xﬂpl" . '7X0Pk)
O'ES}H_Z
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(=¥ _
- 1374 Z Sgnan(X017"'7X0'k)*w(XUk+17"'7X0'k+l)
o O'ES]C+@

= (=D Aw(X1,. .., Xire).

0

Remark 11: In particular the above theorem holds for symmetric tensors x € T(U* @ U* @ V).

Theorem 23. Let Eq,...,Eg be vector bundles over M. Suppose that x € I'(E} ® Ef ® E}),
* € [(E] ®Ef ® Es), * € I'(E; ® E¢ ® Es5) and % € I'(E5 ® Ef ® Eg) be associative, i.e.

(Y1 % 1h2) k93 = b1 * (2 % 4b3), for all 1 € T'(Eq1), 91 € T'(E2),¢1 € I'(Es3).
Then for wy € Q¥ (M, Ey), we € QF2(M,Ey) and ws € Q¥ (M, E3) we have
w1 A (wg A (,U3) = (w1 A wg) N ws.

Proof. To simplify notation: E; = --- = Eg = M x R with ordinary multiplication of real
numbers. w1 = a, wo = B, w3 =7, k1 =k, ko = ¢, ks = m.

1
alN(BAY(X1, ..o Xiporm) = m Z sgno a(Xoy, ..., X))
) " 0ESktt4m
1
m Z Sgan(XﬁTk+p1> s 7Xa-k+pz )7(X0k+p[+l P ’XU’“+PZ+m)
peS€+m
Observe: Fix o1,...,0k. Then og41,...,0k+e+m already account for all possible permutations

of the remaining indices. In effect we get the same term (¢ +m)! (number of elements in Sy,,)
many times. So:

1

alN(BAY)(X1, ..o Xiporm) = RV Z sgno a(Xe,, ..., Xo,)
0E€ESktt4m
B(Xoprrr s Xope )Y Xopipirr s Xoprpim)
Calculation of (a A 8) A~y gives the same result. O

Important special case: On a chart neighborhood (U, ¢) of M with ¢ = (x1,...,dz,) we have
dwyy Ao Ndai, (Y1, V) = > sgnodey, (Ye,) - dai, (Yo, ) = det(dzs, (Y2)) ks

c€Sk

as was defined previously. In particular, for a bundle-valued form w € Qf(M, E) we obtain with
Theorem 21 that

w\U = Z 1%1...1'4 dl‘il VANRIERWAN dl’ie, 7,/%1...1'2 € F(E’U),
1<i1 < <ip<n
and
(de)‘U = Z dvﬂ)z’l...ié VAN dmil VANKIERIVA dl’iz.
1<i1 < <p<n

Theorem 24. Let Ei,Ey and E3 be vector bundles over M with connections V', V? and V3,
respectively. Let € T'(E} ® E} ® E3) be parallel, i.e. V3 (¢ * @) = (Vi) * ¢ + 9 * (V2p) for
all € T(Eq) and p € T(Eg).. Then, if w € Q¥(M,E1) and n € QY(M, Ey), we have

AV’ (wAn) = (d¥ ' w) An+ (=1)Fw A (d¥n).
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Proof. It is enough to show this locally. For w = v dx;, A--- ANdx;,, n=@dxj A--- Ndzxj,
dVS(w An) = dVS(w *@dzi A Ndxy, Ndzg, N Ndxg,)
:dvg(zp*go)/\dxil/\-‘-/\dxik/\d:z:le---/\da:je
= (@' ) x o+ xdV @) Adaiy A+ Adag, Adaj, A--- Adr,
= (dV' ) * @ Adai, A+ Adag, Adaj, A--- A dz,
+ % (dV @) Nz A+ Nz, Adxj, A A day,
=dV' ) Adag, A+ Ndag, Apdzy, A Adag,
F (=Dkp Adag, A Adzy, AdY @ Adag, A Adag,
= (d'w) An+ (=1)*w A (dVn).

Since dV is R-linear and the wedge product is bilinear the claim follows. O

8. PULLBACK

Motivation: A geodesic in M is a curve v without acceleration, i.e. 4" = (7)) = 0. But what
a map is 7’7 What is the second prime? +'(t) € T, ;M. Modify +' slightly ~~ ?’(t) = (t,7/(¢))
~ :y\’ € I'(v*TM). Right now v*TM is just a vector bundle over (—¢,¢). If we had a connection
V then we can define

V'=Va.
ot

Definition 35 (Pullback of forms). Let w € Q¥(M,E). Then define f*w € QF(M, f*E) by
(f*UJ)(Xl, s 7Xk) = (p7w(df(X1)a SRR df(Xk‘)))
forallpeM, Xy,..., Xy € T,M. For € QO(M, E) we have f*i) = (Id,p o f).

For ordinary k-forms w € QF(M) =2 QF(M, M xR): (f*w)(X1,...,Xp) = w(df(X1),...,df (Xp)).
Let E — M be a vector bundle with connection V, f: M — M.

Theorem 25. There is a unique connection V =: f*N on f*E such that for all 1 € I'E),
X € TyM we have Vx(f*) = (p, Vdf(X)w). In other words

(V) = [ (V).

Proof. For uniqueness we choose a local frame field ¢1, ..., ¢ around f(p) defined on V' C N
and an open neighborhood U C M of p such that f(U) C V. Then for any ¢ € I'((f*E)|;)
there are g1,...,gr € €°°(U) such that ¢ = >, g;f*p;. If a connection V on f*E has the
desired property then, for X € T,M,

Vxv = ((Xg)f ei + 9;Vx(F2) = > ((Xg5)f* 0 + 9;(p, Vap(x)25))
: i

J
= ((Xgj) e+ 9; > Pwin(X)er)) = (0. > ((Xgi)pi0 f + 9 > win(X)or o f)),
7 k k

J

where @df(x)cpj =Y rwik(X)pro f, wjr € Q1 (U). For existence check that this formula defines
a connection. O
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Theorem 26. Let w € QF(M, U), n € QY(M, V) and * € T(U* @ V* @ W). Then
frlwAn) = ffwn f.
Proof. Trivial. O

Theorem 27. Let E be a vector bundle with connection V over M, f: M — M, w € Qk(l\~/I, E).
Then

7V (frw) = fH(dVw).

Proof. Without loss of generality we can assume that M C R” is open and that w is of the form

W= Z Yiyigdxiy N Ndwy, .

1<ii << <n

Then
frw= Z (fiyoiy) frdxiy Ao A frday,,
1<in < <ig<n
d¥w = Z Vpiy iy, Ndxiy N Ndxy, .
1<ip <+ <ip<n
Hence

frd¥w = S (Vi) A frdag Ao A R,

1< << <n

= Z (f*Vf*QleZk) ANdzi odf A+ Ndx;, odf

1< << <n

= > (dV i) Ny o f) A Ad(a, o f)

1<iy < <ixp<n
=d"V(frw).
O

Exercise 29. Consider the polar coordinate map f: {(r,0) € R? | r > 0} — R? given by
f(r,0) := (rcosf,rsinf) = (z,y). Show that

“(xdx +ydy) =rdr and f*(zdy — ydz) = r? do.
J( y dy y—y

Theorem 28~(Pullback metric). Let E — M be a Euclidean vector bundle with bundle metric g
and f: M — M. Then f*E there is a unique metric f*g such that (f*g)(f*v, f*¢) = f*g9(1, ¢)
and f*g is parallel with respect to the pullback connection f*V.

Exercise 30. Prove Theorem 28.

9. CURVATURE
Consider the trivial bundle E = M xR¥, then f € €°(M,R*) <+ ¢ € T'(E) by f <+ ¢ = (Idy, f).
On E we have the trivial connection V:
¢ = (Idy, f) € T(E), X e T(TM) ~ Vxtp := (I, X f).
This V satisfies for all X,Y € I'(TM), ¢ € T'(E):
VxVyy —VyVxy = Vixy .
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PT’OOf. Vyi/J = (IdM,Yf), Vva”l/} = (IdM,XYf), VXVyw - VyVXw = (IdM,[X, Y]f) =
Vix,y)¥. In case M C R" open, X = a?ci, Y = a%j ~ [X,Y] = 0 and the above formula says
vavigb:viv%w

Ié]
oz, Brzj 8mj

0

The equation VxVyt¢ —VyVx1 —V(x yj = 0 reflects the fact that for the trivial connection
partial derivatives commute. Define a map RV : I'(TM) x I'(TM) x I'(E) — I'(E) by
(X.Y,$) = RY (X, V) := VxVyt) = Vy Vit — Vix y o).

Theorem 29. Let E be a vector bundle with connection V. Then for all X,Y € I'(TM) and
Y € I'(E) we have

RY(X, Y)Y =dVdvy(X,Y).

Proof. In fact,

d¥(dV9)(X,Y) = Vx(dV9(Y)) = Vy (dV (X)) =d¥ (X, Y]) = VxVy v~ Vy Vxt = Vix y .
O

Theorem 30 (Curvature tensor). Let V be a connection on a vector bundle E over M. The

map RY is tensorial in X,Y and . The corresponding tensor RV € O%(M,EndE) such that
[RV(X,Y )], = RV (Xp, Yp)tbp is called the curvature tensor of V.

Proof. Tensoriality in X and Y follows from the last theorem. Remains to show that RV is
tensorial in :

RY(X,Y)(fv) = VxVy (f¥) — Vy Vx(fv) = Vixy)(f¥)

=Vx(Y/)U+ fVyy) = Vy (X )Y + [Vx0) — (X, Y] + fVixy¥)

= XY+ Y HVxy+(X)Vyd + fVxVyd =Y (X

—(XOVyy = (Y )IVyy — fVyVxy — (X, Y])Y — fVixy¥
= fRY(X,Y).
O
Exercise 31. Let E — M be a vector bundle with connection V, ¥ € I'(E) and f: N — M.
Then
(FRY)(f9) = f*(RV) = BRIV fo.

Lemma 2. Given X1,...,X; € T,M, then there are vector fields Xy, ..., X, € I'(TM) such
that X1p, = Xl, vy Xip = Xk and there is a neighborhood U 3 p such that [Xi,Xj]\U =0.

Proof. We have already seen that we can extend coordinate frames to the whole manifold. This
yields n vector fields Y; such that [Y;, Y;] vanishes on a neighborhood of p. Since there Y; form a
frame. Then we can build linear combinations of Y; (constant coefficients) to obtain the desired
fields. 0

Theorem 31. Let E — M be a vector bundle with connection V. For each w € QF(M,E)

dVdVw =RV A w.
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Proof. Let p € M, X1,..., Xp42 € T,M. Choose Xi,..., Xpyo € T(TM) such that X;, = X;
and near p we have [X;, X;] =0, 4,5 € {1,...,k+ 2}. The left side is tensorial, so we can use
Xi,..., Xj1o to evaluate dVdYw(X7, ..., Xgy2). Then i; € {1,...,k+ 2}

k
dVw(Xigs -, Xip) = D (- JVX wW(Xigs - Xijs oo Xiy)-
7=0
Then
d¥dYw(X1, ..., Xig2) = Y (1), Vx,w(Xy, .., Xy X, Xeg2)
1<j
+Z(—1)i+j+1VXivij(X1,...,Xj,...,Xi,...,Xk+2)
7<i
=3 (=)™ (Vx,Vx, = Vx,Vx)w(X1, .., Xiy oo, Xy oo, Xiya)
1<J
=Y ()™ RY(X;, X))w( X1, Xiy oo o, Xy oo, Xpga).
1<J

On the other hand

1
RV/\w(Xl,...,XM):m > sgnoRY (Xoy, Xop)w(Xoy, - Xoys)-

7€ Sp12
For i,j € {1,...,k+ 2}, i # j define
Agigy = {0 € Skia | {o1,02} = {i, j}}.
For i < j define 0/ € Sj.o by 0/ =i and o3 = j, O’-f))j << a,i];rQ, ie.
ol = (i,j,3,...,:...,‘],...,k—l—2).
In particular we find that sgno® = (—1)"*/. Further

Ay =1{0"0p|p€Sipa, pr=1,p2=2}U{0" 0p|p € Spr2, p1 =2, p2 =1}.

=AL5 = AL
Note, sgn(c¥ o p) = (—1)i*J sgnp With this we get

RVAw(X1, ..., Xpyo) = 'Z > sgnoRY (Xo,, Xop)w(Xoy, -y Xog,)
"L<]U€A{1]}

k;' Z Z Sgh URV<X017X02)W(XU37 <o 7X0'k+2)

I\

+ Y sgnoRY (Xoy, Xoo)w(Xoy, -, Xoyys)
o€EA,

{i,5}
1 o
= mz Z (1)1 sgnpRV(Xi,Xj)w(Xaij ooy X i)
i< \pESkt2.0=1,02=2 P3 Pht2

+ Z (—1)i+jsgnpRV(Xj,Xi)w(Xo_:%, X gy ))

Opk+2
PESk+2,01=2,p2=1 +
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1 L
= ﬁz > (=)™ SgnpRv(XiﬂXj)Sgnpw(Xo-éja"'7XO-LJ )
T <) \pESk+2,p1=1,p2=2 *
+ Z (—1)i+jsgnpRv(Xj,Xi)(—sgnp)w(XUiJ; ooy X i)
PESk42,01=2,p2=1 "3 Pht2

=Y (1) RY(X;, Xj)w(X1, ..., Xi, .., X, oo, Xiso)
1<J
O

Lemma 3. Let E — M be a vector bundle, p € M, ¢ € E,, A € Hom(T,M,E,). Then there is
1 € T(E) such that ¢, =1 and Vxp = A(X) for all X € T,M.

Proof. Choose a frame field @1, ..., @g of E near p. Then we have near p
k

Vxei = > aij(X)g;, for aij € QH(M), Zﬂz%p for B € (T,M)*, 4 = Zaz%p
= =1

Ansatz: ¢ =Y, fip; near p ~» requirements on f;. Certainly f;(p) = a;. Further, for X € T, M,
ST Bi(X) i = Vv =D (dfi(X) i + filp Z aij (X)@jp)-
i

With fz(p) = Qy,
Bi = dfi + Zajaji-
J

Such f; are easy to find. O

Theorem 32 (Second Bianchi identity). Let E be a vector bundle with connection V. Then its
curvature tensor RV € Q*(M, End(E)) satisfies

dVRY =0

Proof 1. By the last two lemmas we can just choose Xy, X1, X3 € I'(TM) commuting near p
and ¢ € I'(E) with Vx1 = 0 for all X € T,M. Then near p

RY(X;, X;)¥ = Vx,Vx,¥ — Vx, V0
and thus
[dY RY (X0, X1, X3)]¢) = (Vxo RY (X1, X2))¥ + (Vx, RY (X2, X0))¥ + (Vx, RY (Xo, X1))¥
=Vx,Vx,;Vx,¥ = Vx,Vx, Vx, ¥ + Vx, Vx, Vx 9
-V, VoV, + Vx,Vx Vx, ¥ — Vx,Vx, Vx
= RY (X0, X1)Vx, ¥ + RY (X, X0)Vx, ¥ + RY (X1, X3)V x, 0,
which vanishes at p. O

Proof 2. We have (d¥VRY ) = dV (RVv¢) — RV ANdVap = dV (dVdVp) —dVdY (dVey) = 0. O
Exercise 32. Let M = R3. Determine which of the following forms are closed (dw = 0) and
which are exact (w = df for some 0):

a) w=yzdr+zzdy+rydz,

b) w=xdr+ 2?y* dy + yz dz,

c) w=2xy?dr Ndy + zdy A dz.
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If w is exact, please write down the potential form 6 explicitly.

Exercise 33. Let M = R". For £ € T'(TM), we define w® € Q' (M) and xw® € Q""Y(M) as
follows:

WH(X1) = (6, X1), *wt(Xa,..., Xy,) :=det(&, Xy, ..., X,), Xi,...,X, € T(TM).
Show the following identities:
df = w4 dxw® = div(€) det,

and forn =3,

dw® = %W,

10. FUNDAMENTAL THEOREM FOR FLAT VECTOR BUNDLES

Let E — M be a vector bundle with connection V. Then
E trivial <= 3 frame field ® = (¢1,...,0k) with Vo; =0,i=1,...,k
and

E flat <= E locally trivial, i.e. each point p € M has a neighborhood U such that E|; is trivial.
Theorem 33 (Fundamental theorem for flat vector bundles). (E, V) is flat <= RY = 0.

Proof. 7=": Let (¢1,...,¢k) be alocal parallel frame field. Then we have for i =1,... k
RY(X,Y)p; = VxVyp; — VyVxei — Vixypi = 0.

Since RY is tensorial checking RV = 0 for the elements of a basis is enough.

7«": Assume that RV = 0. Locally we find for each p € M a neighborhood U diffeomorphic
to (—e,¢)" and a frame field ® = (1,..., ;) on U. Define w € QY (U, RF*¥) by

k
Vi = ojwji.
j=1

With V& = (Vi,...,Ver), we write

Vo = dw.
Similarly, for a map F': U — Gl(k,R) define a new frame field:

o =qr!
All frame fields on U come from such F. We want to choose F' in such a way that V& = 0. So,
02 Vd=V@F )= (V®)F ' +0d(F ') = (VO)F ' —®F 'dF F! = &(w— F'dF)F,
where we used that d(F~!) = —F~1dF F~1. Thus we have to solve

dF = Fuw.

The Maurer-Cartan Lemma (below) states that such F': U — Gl(k,R) exists if and only if the
integrability condition (or Maurer-Cartan equation)

do+wAw=0
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is satisfied. We need to check that in our case the integrability condition holds: We have
0=RY(X,Y)® =VxVy® - VyVxd— Vixy®
= Vx(w(Y)) — Vy (Pw(X)) — Puw([X,Y])
= Pw(X)w(Y)+ 2(Xw(Y)) — dw(Y)w(X) — 2(Yw(X)) — dw([X,Y])
= P(dw + w Aw)(X,Y).
Thus dw 4+ w Aw = 0. U

Exercise 34. Let M C R? be open. On E = M x R? we define two connections V and V as

follows:
_ 0 —zdy = 0 —zdx
v_d+<xdy 0 >, v_d+<xd1: 0 )

Show that (B, V) is not trivial. Further construct an explicit isomorphism between (B, V) and
the trivial bundle (E,d).

Lemma 4 (Maurer-Cartan). Let U := (—¢,¢)", w € QY (U,R¥**) Iy € GI(k,R). Then
IF: U — Gl(k,R) : dF = Fw, F(0,...,0) = Fy <= dw +w Aw = 0.

Remark 12: Note that dw + w A w automatically vanishes on 1-dimensional domains.

Proof. 7=": Let F: U — Gl(k,R) solve the initial value problem dF = Fw, F(0,...,0) =
Fy. Then 0 = d?F = d(Fw) = dF Aw + Fdw = Fu Aw + Fdw = F(dw + w A w). Thus
dw+ w Aw = 0. "<« (Induction on n)”: Let n = 1. We look for F': (—¢,e) — Gl(k,R) with
dF = Fw, F(0,...,0) = Fy € Gl(k,R). With w = Adz, this becomes just the linear ODE

— FA,

which is solvable. Only thing still to check that F(z) € Gl(k,R) for initial value Fy € Gl(k,R).
But for a solution F we get (det F')’ = (det F')trA. Thus if (det F')(0) = det Fy # 0 then
det F(z) # 0 for all z € (—¢,e). Now let n > 1 and suppose that the Maurer-Cartan lemma
holds for n — 1. Write w = Ay dxy + - -+ + Andx, with A;: (—e,&)" — RF*¥. Then

(dwtwAw) (52, 52 (ZdAa/\d:ra—i—ZA Apdrandzs) (5%, 5o) = St —GA+ AiAj— A A;.

ox;’ Bz]
?B

7

By induction hypothesis there is E': (—e,e)" ' — GI(k,R) with g—f =FA;,i=1,...,n—1,

and F'(0) = Fy. Now we solve for each (z1,...,2,_1) the initial value problem

Fg/cl, T 1(xn) = Lz, 20 1 (wn)An(xlv R 7‘7:71)7 lew,ﬂﬂnq(o) = F(xla R 7$n—1)'

Define F(z1,...,2n) = Fyy. 2, (2,). By construction d = FA, and with dw +w Aw =0,

agn(axl FA;) = W%_W(FA) (FA)—E(FAU
OF 0A;
= leAn A +F( 8:(:2 an)

=24, FAnAZ- + F(ApA; — AjAy)
= F(55 — FA)A,.

Thus t — (8—F — FA)(x1,..., 201, ) solves a linear ODE. Since 2 71, — FA; =0 on the slice
{z € (—¢,&)" | &, = 0}, we conclude —FA, forall o € {1,...,n} on whole of (—¢,e)"”. O
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Exercise 35. Let M C R be an interval and consider the vector bundle E = M x R*, k € N,
equipped with some connection V. Show that (E,V) is trivial. Furthermore, show that any
vector bundle with connection over an intervall is trivial.

11. AFFINE CONNECTIONS

Definition 36. A connection V on the tangent bundle is called an affine connection.

Special about the tangent bundle is that there exists a canonical 1-form w € Q'(M, TM), the
tautological form, given by
w(X) = X.
Definition 37 (Torsion tensor). If V is an affine connection on M, the TM-valued 2-form
TV :=dVw is called the torsion tensor of V. V is called torsion-free if TV = 0.
Example 1: Let M C R" open. Identify TM with M x R™ by setting (p, X)f = dpf(X).
On M x R use the trivial connection: All X € T'(M x R) are of the form X = (Id, X) for
X € €°(M,R"™).
(VxY)p = (p, dpY (X))
Remark (engineer notation): VxY = (X - V)Y, with V = (ai1 ai al)t and X = (x1, 12, 73)
0 0
X V= —.
Moz 2 0m; T o
Define a frame field Xq,..., X, on M of ‘constant vector fields’ X; = (p,e;). Then with V

denoting the trivial connection on TM = M x R"™ we have

TV(X;, X;) = Vx,X; — Vx,X; — [Xi, X;] = 0.

+ ro——

Theorem 34 (First Bianchi identity). Let V be a torsion-free affine connection on M. Then
for all X,Y,Z € T'(TM) we have

RY(X,Y)Z +RY(Y,Z)X + RV (Z,X)Y = 0.
Proof. For the tautological 1-form w € QY(M, TM) and a torsion-free connection we have 0 =
dVdVw(X,Y,Z) = RVAw(X,Y,Z) = RV(X,Y)Z + RV(Y,Z)X + RV(Z,X)Y. O

Theorem 35. If V is a metric connection on o Fuclidean vector bundle E — M then we have
for all X, Y € T'(TM) and ¢, p € T'(E)

(RV(X,Y), ) = —(1h, RY (X, Y)gp),

i.e. as a 2-form RY takes values in the skew-adjoint endomorphisms.

Proof. The proof is straightforward. We have
0=d*(¥, )
= d{d", ¢) + d(¥, d¥ ¢) = (dVdV P, 0) — (V9 AdV ) +(d P A dVp) + (4,7 d" )
= (dVdVy, ) + (¥,d"d" ).
With dVdY = RV this yields the statement. O

Definition 38 (Riemannian manifold). A Riemannian manifold is a manifold M together with
a Riemannian metric, i.e. a metric (.,.) on TM.
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Theorem 36 (Fundamental theorem of Riemannian geometry). On a Riemannian manifold
there is a unique affine connection V which is both metric and torsion-free. V is called the
Levi-Civita connection.

Proof. Uniqueness: Let V be metric and torsion-free, X,Y,Z € I'(TM). Then
X(Y,Z)+Y(Z,X) - Z(X,Y) = (VxY, Z) + (Y,VxZ) + (Vy Z, X)
+(Z,VyX) —(VzXY) - (X,VzY)
=(VxY+VyX,Z2)+ (Y, VxZ - VzX)+ (VyZ - VzY, X)
= 2VxY - [X,Y],Z) + (Y, [X, Z]) + ([Y, Z], X).

Hence we obtain the so called Koszul formula:
1
(VY. Z) = S(X(Y. 2) + Y(Z,X) = Z(X.Y) + (X.Y]. Z) = (V. [X, Z]) - ([Y. 2], X)).

So V is unique. Conversely define VxY by the Koszul formula (for this to make sense we need
to check tensoriality). Then check that this defines a metric torsion-free connection. g

Exercise 36. Let (M, g) be a Riemannian manifold and § = e**g for some smooth function
u: M — R. Show that between the corresponding Levi-Civita connections the following relation
holds:

VxY = VxV +du(X)Y + du(Y)X — g(X,Y)grad u.
Here grad u € I'(TM) is the vector field uniquely determined by the condition du(X) = g(grad u, X)
for all X € T'(TM).

Definition 39 (Riemannian curvature tensor). Let M be a Riemannian manifold. The curva-
ture tensor RY of its Levi-Civita connection V is called the Riemannian curvature tensor.

Exercise 37. Let (M, (.,.)) be a 2-dimensional Riemannian manifold, R its curvature tensor.
Show that there is a function K € €°°(M) such that

R(X,Y)Z =K({(Y,Z)X — (X, Z)Y), for all X,Y,Z € T(TM).

Exercise 38. Let (.,.) be the Euclidean metric on R" and B := {z € R | |z|> < 1}. For
ke {-1,0,1} define
o 4
gk|a; T (1 n ]€|LL“2)2 <°a >
Show that for the curvature tensors Ry of the Riemannian manifolds (B,g-1), (R™, go) and
(R™, g1) and for every X, Y € R™ the following equation holds:

gr(Re(X, Y)Y, X) = k(gr(X, X)gr(Y,Y) — gi(X,Y)?).

12. FLAT RIEMANNIAN MANIFOLDS

The Maurer-Cartan-Lemma states that if E — M is a vector bundle with connection V such
that RY = 0 then E is flat, i.e. each p € M has a neighborhood U and a frame field @1, ..., @) €
I'(E|;) with Vo; =0, j = 1,...,k. In fact if we look at the proof we see that given a basis
1, ..., € Ep, the frame @1, ..., ¢ can be chosen in such a way that p;(p) =, j=1,...,k.

Suppose E is Euclidean with compatible V then choose 1, ..., ¥, to be an orthonormal basis.
Then for each X € I'(TU) we have X(p;,p;) = 0, 1,5 = 1,...,k, ie. (assuming that U
is connected) @1, ...,y is an orthonormal frame field: (p;, p;)(q) = d;; for all ¢ € U. We
summarize this in the following theorem.
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Theorem 37. Fvery Fuclidean vector bundle with flat connection locally admits an orthonormal
parallel frame field.

Definition 40 (Isometry). Let M and N be Riemannian manifolds. Then f: M — N is called
an isometry if for all p € M the map dpf: TpM — Ty, )N is an isometry of Euclidean vector
spaces. In other words, f is a diffeomorphism such that for all p € M, X, Y € T,M we have

(df (X),df (Y))n = (X, Y )m.
Intiution: n-dimensional Riemannian manifolds are ” curved versions of R®”. R™ = “flat space”.
The curvature tensor RY measures curvature, i.e. deviation from flatness.

The following theorem states that any Riemannian manifold with curvature R = 0 is locally
isometric to R™.

Theorem 38. Let M be an n-dimensional Riemannian manifold with curvature tensor R = 0
and let p € M. Then there is a neighborhood U C M of p, an open set V. C R™ and an isometry
frU=>V.

Proof. Choose U C M open, p € U then there is a parallel orthonormal frame field X, ..., Xy €
['(TU). Now define E:=TM® (M xR) = TM @ R. Any ¢ € I'(E) is of the form

_ (Y
v=(y)
with Y € T(TM) and g € €°°(M). Define a connection V on E as follows
C Y)._ (VxY—gX
VX(g) '_< X' )
It is easy to see that V is a connection. Now
Rﬁ(X Y) (g) —Vy (VY5—9Y> Yy (VX)Z(—gX> B (V[X,Y]Z_g[x,y})
’ g 9

[X,Y]g
_ (VXVyZ—(Xg)Y—gVXY—(Yg)X) _ (VyVXZ—(Yg)X—gVyX—(Xg)Y) _ (V[X,Y]ng[va])
XYyg YXg [X,Y]g
_ (R(X(,)Y)Z) -0

Now choose U C U, p € U and % € I'(E|;;) with ¢, = (0,1), Vi) = 0. Then ¢ = (Y,g) with
Y = Z?:l ijj and

(9) = (VXY—9X> _ (Z] dfj(X)Xj—gX>

0 Xg Xg ’

In particular, g = 1. If we define f: U — R" by f = (f1,---, fn) then
(df(X),df(Z)) = Z<dfj(X)adfj(Z)> = (9X,gY) = (X,Y).

J

In particular, d,f is bijective. The inverse function theorem then yields a neighborhood U of p
such that f|; : U =V C R" is a diffecomorphism and hence an isometry. O

Exercise 39. Let M and 1\:/1 be Riemannian manifolds with Levi-Civita connections V and @,
respectively. Let f: M — M be an isometry and X,Y € I'(M). Show that f,VxY =V xf.Y.

Remark 13: With the last exercise follows that a Riemannian manifold M has curvature R = 0
if and only if it is locally isometric to R™.

Exercise 40. a) Show that (X,Y) := itrace(X'Y) defines a Riemannian metric on SU(2).
b) Show that the left and the right multiplication by a constant g are isometries.
¢) Show that SU(2) and the 3-sphere S* C R* (with induced metric) are isometric.

Hint: SU2) ={( % 2) | a,b € C,|af* + [b]* = 1}.
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13. GEODESICS

Let M be a Riemannian manifold, V the Levi-Civita connection on TM, ~: [a,b] — M, Y €
[(y*TM). Then, for ¢ € [a,b] we have Y; € (y*TM); = {t} x T,(zyM = T (yM. Y is called a
vector field along . Now define (Y'), = (7*V) 2 Y = %(t).

Os |t
Definition 41 (Geodesic). 7: [a,b] — M is called a geodesic if v = 0.

Exercise 41. Let f: M — M and g: M — M be smooth. Show that f*(¢*TM) = (g o f)*TM
and

(90 fy'V =fg'V)
for any affine connection V on M. Show further that, if f is an isometry between Riemannian
manifolds, v is curve in M and ¥ = f oy, then

7' =df(+").
Exercise 42. Let M be a Riemannian manifold, v: I — M be a curve which is parametrized

with constant speed, and f: M — M be an isometry which fixes v, i.e. fo~y =~. Furthermore,
let

ker(id — d ) f) = RY(t), for all t.
Then 7 is a geodesic.

Definition 42 (Variation). A variation of y: [a,b] — M is a smooth map «: (—e,€)x[a,b] — M
such that o = vy, where v;: [a,b] — M such that v(s) = «a(t,s). The vector field along v given
by Yy := %‘t*() a(t, s) is called the variational vector field of «.

Definition 43 (Length and energy of curves). Let v: [a,b] — M be a smooth curve. Then
b
L(y) :== / |v'| is called the length of 7,
a

b
E(y) = %/ |Y'|? is called the energy of .

Theorem 39. Let 7: [a,b] — M be a smooth curve. Let ¢: [c,d] — [a,b] be smooth with
O'(t) >0 for all t € [c,d], ¢(c) = a and p(d) =b. Then

L(yop) = L(v).

Proof. L(yop) = [ |(vou)| = [ (v 0 @)l = [55 W] = 2 /] = L(3). 0

Theorem 40. E(v) > mL('yV (equality if and only if |y'| is constant).

Proof. The Cauchy-Schwarz inequality yields L(vy)? < 2E(v) f; 1=2(b—a)E(y). O

Theorem 41. Let v: [a,b] — M be a smooth curve such that ~'(t) # 0 for all t € [a,b]. Then
there is a smooth function : [0, L(y)] — [a, b] with ¢'(t) > 0 for allt, (0) = a and p(L(y)) =b
such that 4 = v o ¢ is arclength parametrized, i.e. |3'| = 1.

Proof. 1f ¢’ = 1/|y/ o], then [7'| = |(y o )¢/| = 1. Define ¢: [a, b] — [0, L(7)] by % (t) = [; ||
Then ¢/(t) > 0 for all ¢, ¥»(a) = 0 and 1 (b) = L(vy). Now set ¢ = 1~L. Then ¢’ = 1/|y op|. O
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Theorem 42. Let M be a manifold with torsion-free connection V. Let f: M — M and let
V = f*V be the pullback connection on f*TM. Then, if X, Y € T'(TM) we have df (X),df (Y) €
L(f*TM) and

Vxdf(Y) = Vydf (X) = df ([X,Y]).

Proof. Let w denote the tautological 1-form on TM. Then dVw =TV =0 and ff*w =df. Thus
0= fdvw=d" f'w = dvdf.

Thus 0 = dVdf(X,Y) = Vxdf(Y) — Vydf (X) — df ([X, Y]). O
Example 2: Let M C R" be open, X = 8@, andY = %. Then df (X) = g—a{i and df(Y) = 59712_.

We have [877 BT} = 0. Hence

of _ of
Vaz 92, = Vaa R
Theorem 43 (First variational formula for energy). Suppose a: (—e,¢) X [a,b] — M is a
variation of v: [a,b] — M with variational vector field Y € T'(v*TM). Then

d b
Gl Ban = - [,
t=0 a
Proof.
d 2 2 * Jda Jda
E‘t E(y _dttOQ/‘t| ;/a dttoas‘ A((QV)(%S(OS),%)

b
da 0 0 0
(5%: 35) _/a (B> (V)2 55

b
_ * fole] day _ 9
_/a {(@™V)g ’t‘(o,sv 2 _/a 95(0,5)

= [aw - [(wan = k- [

Corollary 3. If a is a variation of v with fized endpoints, i.e. a(t,a) = v(a) and a(t,b) = v(b)
for allt € (—¢,¢€), and 7y is a geodesic, then %‘t—o E(v)=0.

Later we will see the converse statement: If  is a critical point of E, then ~ is a geodesic.
Existence of geodesics: Let V be an affine connection on an open submanifold M C R”. Let
X; = 8 . Then there are functions Ffj, called Christoffel symbols of V, such that

Vx,X; =Y ThHX,
k

Let v = (71,...,7) be a smooth curve in M. Then v = 37, 7/(v*X;). By definition of v*V,
(VX)) = (V) 27X = Vy X Zv (Vx,X;) Z% )7 X

Thus ~ is a geodesic of V if and only if
0=7"=> (Vv X; + 7 D AT5 0V Xi).
J ik
Since v* X; form a frame field we get n equations:

0=+ Z%%FZ
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This is an ordinary differential equation of second order and Picard-Lindelof assures the exis-
tence of solutions.

Theorem 44 (First variational formula for length). Let~: [0, L] — M be arclength parametrized,
i.e. Y| =1. Lett = v fort € (—¢,€) be a variation of v with variational vector field Y. Then

I ra= - [

Proof. Almost the same as for the first variational formula for energy. 0

Theorem 45. Let v: [a,b] — M be a geodesic. Then || = constant.

Proof. We have (v/,~") = 2(v',7") = 0. 0

Definition 44 (Killing fields). Suppose t — g; for t € (—¢,€) is a l-parameter family of
isometries of M, i.e. each gi: M — M is an isometry. Then the vector field X € T'(TM),

X, = %’tfo gt(p) is called a Killing field of M.
Theorem 46. Let X € T'(TM) be a Killing field and ~: [a,b] — M be a geodesic. Then

(X,~') = constant.

Proof. Let v := gy o. Then Yy = X () and L(v;) = L() for all t. Thus

b
0= #|_o LW = (X )lo = [ 60" = (1.

Thus (X,0),7'(a)) = (X0, 7/(8). 0

Example 3 (Surface of revolution and Clairaut’s relation): If we have a surface of revolution in
Euclidean 3-space, then the rotations about the axis of revolution are isometries of the surface.
This yields a Killing field X such that X is orthogonal to the azis of revolution and |X| = r,
where r denotes the distance to the axis. From the last theorem we know that if v is a geodesic
parametrized with unit speed then rcosa = (v/,X) = ¢ € R. Thus r = ¢/cosa and, in
particular, r > ¢ Thus, depending on the constant c, geodesics cannot pass arbitrarily thin
parts.

Example 4 (Rigid body motion): Let M = SO(3) € R3*3, q1,...,¢, € R, mq,...,my, > 0.
Now if t — A(t), t € (—e,e), B= A(0), X = A'(0). Then define

n

= % Zmz|XQz
1=1

where X q; = %h:o(A(t)qi). (X, X) is called the kinetic energy at time O of the rigid body that
undergoes the motion t — A(t). The principle of least action then says: When no forces act on
the body, it will move according to s — A(s) € SO(3) which is a geodesic. For all G € SO(3) the
left multiplication A — GA is an isometry. Suitable families t — Gy with Gy = I then yields
the conservation of angular momentum. We leave the details as exercise.

Theorem 47 (Rope construction of spheres). Givenp € M, fort € [0, 1] let v;: [0,1] — M such
that v¢(0) = p for all t. Let X(t) € T,M such that X(t) = v{(0), | X| =v € R, n: [0,1] — M,
n(t) = v(1). Then for all t we have

(' (t), (1)) = 0.
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Proof. Apply the first variational formula to v = v4: Then we have Yy = 0 and Y; = 7. Since
L(v) = fol Y| = fol |X(0)] = v, we have

0= G|,_, L) = {0 (to), 7, (1)) = 0,7, (0)) = (' (t0), 74, (1))-

14. THE EXPONENTIAL MAP

Theorem 48. For each p € M there is a neighborhood U C M and € > 0 such that for all
X € T,M, q € U, with | X| < e there is a geodesic v: [0,1] — M such that v(0) = ¢, 7' (0) = X.

Proof. Picard-Lindelof yields a neighborhood W C TM of 0 € T,M and &1 > 0 such that for
X e W, X € T,M, there is a geodesic v: [—&1,e1] — M such that v(0) = ¢ and +/(0) = X.
Choose U C M open, €2 > 0 such that W := {X € T)M | ¢ € U, |X| < e2} C W. Now
set € = €162. Let ¢ € U, X € T ;M with |X| < ¢ and define Y := éX. Then Y| < eg, ie.
Y € W C W. Thus there exists a geodesic 5: [—e1,e1] — M with 4/(0) = Y. Now define
v:10,1] = M by v(s) = F(e1s). Then 7 is a geodesic with 4/(0) = 15'(0) = 1Y = X. O
Definition 45 (Exponential map). Q :={X € TM | 3~: [0,1] = M geodesic with v'(0) = X }.
Define exp: Q — M by exp(X) = v(1), where v: [0,1] — M is the geodesic with v'(0) = X.

Lemma 5. Ifv: [0,1] = M is a geodesic with v'(0) = X then v(t) = exp(tX) for allt € [0,1].
Proof. For t € [0,1] define 7;: [0,1] — M by ~v:(s) = y(ts). Then ~;(0) = tX , %(1) = y(t),
is a geodesic. So exp(tX) = (1) = (). O

Exercise 43. Show that two isometries Fy, Fo: M — M which agree at a point p and induce
the same linear mapping from T, M agree on a neighborhood of p.

Theorem 49. Let p € M. Then there is € > 0 and an open neighborhood U C M of p such that
B :={X e T)M | |X| <e} CQ and exp|p_: B: = U is a diffeomorphism.

Proof. From the last lemma we get dg, exp(X) = X. Here we used the canonical identification
between T,M and Tg,(TM) given by X + (¢ — tX). The claim then follows immediately from
the inverse function theorem. 0

Definition 46 (Geodesic normal coordinates). (exp|g )~': U — B. C T,M = R" viewed as a
coordinate chart is called geodesic normal coordinates near p.

Exercise 44. Let M be a Riemannian manifold of dimension n. Show that for each point p € M

there is a local coordinate ¢ = (x1,...,xy) at p such that
0 o) o)
9(3%7@) = 0ij, Vi%j = 0.
p ox; p

Theorem 50 (Gauss lemma). exp|p_maps radii t — tX in Bc to geodesics in M. Moreover,
these geodesics intersect the hypersurfaces S, = {exp(X) | X € Be, |X| =} orthogonally.
Proof. This follows by the last lemma and the rope construction of spheres. O

Definition 47 (Distance). Let M be a connected Riemannian manifold. Then for p,q € M
define the distance d(p,q) by

d(p,q) = inf{L(7) | v: [0,1] = M smooth with v(0) = p, v(1) = q}.
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Exercise 45. a) Is there a Riemannian manifold (M, g) which has finite diameter (i.e. there
is an m such that all points p,q € M have distance d(p,q) < m) and there is a geodesic of
infinite length without self-intersections?

b) Find an example for a Riemannian manifold diffeomorphic to R™ but which has no geodesic
of infinite length.

Definition 48 (Metric space). A metric space is a pair (X, d) where X is a set and d: XxX — R
a map such that

a) d(p,q) >0, d(p,q) =0 p=gq,
b) d(p,q) = d(q,p),
¢) d(p,q) +d(q,r) > d(p,r).

Is a Riemannian manifold (with its distance) a metric space. Symmetry is easy to see: If
~v:10,1] — M is a curve from p to ¢, then (¢) := v(1—1) is a curve from ¢ to p and L(%) = L(v).
For the triangle inequality we need to concatenate curves. So let v: [0,1 — M] be a curve from p
to g and 4: [0,1] — M be a curve from ¢ to r. Though the naive concatenation is not smooth we
can stop for a moment and then continue running: Let ¢: [0,1] — [0, 1] be smooth monotone
function such that ¢(0) = 0, (1) = 1 and ¢’ vanishes on [0,¢) U (1 — &,1] for some € > 0
sufficiently small. Then define for v from p to ¢ and 4 from ¢ to r

A8 — (p(2t)),  fortel0,1/2),

(O A
Then L(%) = L(vy) + L(¥). For every € > 0 we find v and 4 such that

L(y) <d(p,q) +&, L(7) <d(q,r) +e.

Thus by concatenation we obtain a curve 4 from ¢ to r such that L(%) < d(p,q) + d(q,r) + 2e.
Thus d(p,r) < d(p,q) + d(g,r). Certainly, L(y) > 0 ~ d(p,q) > 0 and d(p,p) = 0. So the only
part still missing is that p = ¢ whenever d(p, ¢) = 0.

Theorem 51. Let p € M and f: B. — U C M be geodesic normal coordinates at p. Then
d(p,exp(X)) = |X|, for|X|<e.

Moreover, for q € U, d(p,q) > €.

Proof. Choose 0 < R < e. Takev: [0,1] — M with v(0) = p, y(t) := exp(tX) with | X| = R. Let
q := (1) = exp(X). Then L(v) = R. In particular, d(p,q) < R. Now, choose 0 < r < R and
let v: [0,1] — M be any curve with (0) = p and y(1) = ¢. Define a to be the smallest ¢ € [0, 1]
such that there is Y such that y(t) = exp(Y), |Y| = r. Define b to be the smallest ¢t € [0, 1],
a < b, such that there is Z such that v(b) = exp(Z), |Z|] = R. Now find : [a,b] — TM such
that r < |£(t)| < R for all t € (a,b), |£(a)] =7, |£(b)] = R and exp({(t)) = ~(t) for all ¢ € [a, b].
Define p: [a,b] — M by p := [¢] and v: [a,b] = M by § =: pv. Claim: L(7|,,) = R =
Afterwards: L(vy) > R — r for all such » > 0. Hence L(y) > R and thus d(p,q) = R. Let us
prove the claim: For all ¢ € [a, b] we have

Y(t) = dexp(&'(t)) = dexp(p'(t)v(t) + p(t)/' (1)) = p'(t)dexp(v(1)) + p(t)dexp(V'(1)).
By the Gauss lemma we get then

' (0) = [0 (t)dexp(v(1))|* + |p(t)d exp(v' (1)) * > |0/ (1)]? [dexp(v (1)) |* = p'(£)*.
\—:,1_/
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b b
Lolo) = [ 1012 [ o = sli=R—7

Certainly, we can have equality only for v/ = 0. This yields the second part. O

Thus we have

Corollary 4. A Riemannian manifold together with its distance function is a metric space.

Corollary 5. Let v: [0,L] — M be an arclength-parametrized geodesic. Then there is € > 0
such that d((0),~v(t)) =t for allt € [0,¢].

The first variational formula says: If v: [a,b] — M is a smooth length-minimizing curve, i.e.
L(vy) = d(v(a),7v(b)), then v is a geodesic. To see this, choose a function p: [a,b] — R with
p(s) > 0forall s € (a,b) but p(a) =0 = p(b). Then there is £ > 0 such that a: (—¢,¢) x (a,b) —
M, a(t,s) = exp(tp(s)y”(s)). Without loss of generality we can assume that |y/| = 1. Then

d
0=—| L) =" 0"a —/ (7", / "2
dt t=0 \W—/
=0
for all such p. Thus we conclude v’ = 0 and so v is a geodesic. We need a slightly stronger
result. For preparation we give the following exercise:
Exercise 46. d(p,q) = inf{L(v) | v: [a,b] = M piecesewise smooth, y(a) = p, v(b) = q}.

Theorem 52. Let v: [0, L] — M be a continuous piecewise-smooth curve with |y'| =1 (when-
ever defined) such that L(y) = d(v(0),~v(L)). Then v is a smooth geodesic.

Proof. Let 0 = s9g < --- < s = L be such that 7‘[31.,1,&] is smooth, ¢ = 1,...,k. The above
discussion then shows that the parts 7|[si_1’si] are smooth geodesics. We need to show that
there are no kinks. Let j € {1,...,k — 1} and X := ’Y,’[s]- 1,83]( ), X = ol

Claim: X = X. Define Y = X — X and choose any variation v; of v which does nothing on
[0, ijl] @] [SjJrl, L] Then

[sj,85+1] (Sj)‘

d d i )
dt =0 (ﬂ)/t) ; dt 0 (Vt’[sj—l,sj]) < ) > < y > | ’
Thus X — X = 0. -

15. COMPLETE RIEMANNIAN MANIFOLDS

Definition 49 (Complete Riemannian manifold). A Riemannian manifold is called complete
if exp s defined on all of TM, or equivalently: every geodesic can be extended to R.

Theorem 53 (Hopf and Rinow). Let M be a complete Riemannian manifold, p,q € M Then
there is a geodesic y: [0, L] with v(0) = p, v(L) = ¢ and L(vy) = d(p, q).

Proof. Let ¢ > 0 be such that exp|p_ is a diffeomorphism onto its image. Without loss of
generality, assume that 6 < d(p,q). Let 0 < § < ¢ and set S := exp(Ss), where S5 = 0Bs. Then
f: S — R given by f(r) = d(r,q) is continuous. Since S is compact, there is 9 € S where f
has a minimum, i.e.

d(ro,q) < d(r,p) for allr € S.
Then ro = v(6), where v: R — M with v(0) = p. Define

d(S,q) :=inf{d(r,q) | r € S}.
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Then d(S, q) = d(ro,q). Every curve n: [a,b] — M from p to ¢ has to hit S: There is ¢y € [a,b]
with n(tg) € S. Moreover,

L(n) = L(nljq40)) + L(nlyy ) = 0 +d(S,q) = 6+ d(ro, ).
So d(p,q) > § + d(r,q). On the other hand, the triangle inequality yields d(p,q) < d(p,ro) +
d(ro,q) = 6 + d(ro, q). Thus d(v(0),q) = d(p,q) — 9.

Define statement A(t): "d(v(t),q) = d(p,q) — t.” So we know A(9) is true. We want to show
that also A(d(p,q)) is true. Define

to :=sup{t € [0,d(p,q)] | A(t) true}.
Assume that ty < d(p,q). Claim: A(tg) is true. This is because there is a sequence t1,to, ...,

with lim, o t, = to and A(t,) true, ie. f(t,) = 0 where f(t) = d(v(t),q) — (d(p,q) — t).
Clearly, f is continuous. Thus f(ty) = 0, too.

Now let ¥ be a geodesic constructed as before but emanating from ~y(typ). With the same
argument as before we then get again

d(ﬁ/(S), Q) = d(:Y(O% Q) — 0.
Now, since A(tp) is true, we have

d(p, q) < d(p,7(9)) + d(7(9), 9) = d(p,7(9)) + d(7(0),9) — 6 = d(p,7(9)) + d(p,q) —to — 6.
There obviously is a piecewise-smooth curve from p to 4(8) of length tg+4. So d(p,5(0)) < to—+9.
Hence d(p,75(8)) = to + 6. Hence this piecewise-smooth curve is length minimizing and in
particular it is smooth, i.e. there is no kink and thus we have 5(8) = ~(tg + 9).

Now we have d(v(tg+6),q) = d(y(to),q) — 0 = d(p,q) — (to +0). Thus A(to +9) is true, which
contradicts the definition of ty. So A(d(p, q)) is true. O

Theorem 54. For a Riemannian manifold M the following statements are equivalent:

a) M is complete Riemannian manifold.
b) All bounded closed subsets of M are compact.
¢) (M, d) is a complete metric space.

Proof. a) = b): Let A C M be closed and bounded, i.e. there is p € M and ¢ € R such that
d(p,q) < c for a all p,q € A. Look at the ball B, C T,M. Hopf-Rinow implies then that
A C exp(B.). Hence A is a closed subset of a compact set and thus compact itself. b) = ¢) is
a well-known fact: Any Cauchy sequence {py}nen is bounded and thus lies in bounded closed
set which then is compact. Hence {p, }nen has a convergent subsequence which then converges
to the limit of {py }nen. ¢) = a): Let v: [0,¢] — M be a geodesic.

T :=sup{t > ¢ | can be extended to [0,T]}.
We want to show that 7' = oco. Define p,, := v(T'— ). Then {p, }nen defines a Cauchy sequence
which thus has a limit point p := lim,, o pr. Thus 7y extends to [0,T] by setting v(T") := p.
Thus v extends beyond T'. which contradicts the definition of 7. ([l
Exercise 47. A curve v in a Riemannian manifold M is called divergent, if for every compact
set K C M there exists a ty € [0,a) such that v (t) & K for all t > tg. Show: M is complete if
and only if all divergent curves are of infinite length.

Exercise 48. Let M be a complete Riemannian manifold, which is not compact. Show that
there exists a geodesic v: [0,00) — M which for every s > 0 is the shortest path between -y (0)

and vy (s).
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Exercise 49. Let M be a compact Riemannian manifold. Show that M has finite diameter, and
that any two points p,q € M can be joined by a geodesic of length d(p,q).

16. SECTIONAL CURVATURE
Definition 50 (Sectional curvature). Let M be a Riemannian manifold, p € M, E C T,M,
dimE =2, E =span{X,Y}. Then
(R(X, Y)Y, X)
<Xa X><Y7 Y> - <Xa Y>2
1s called the sectional the sectional curvature of E.
Exercise 50. Check that Kg is well-defined.
Theorem 55. Let M be a Riemannian manifold, p e M, X, Y, Z, W € T,M. Then

(R(X,Y)Z,W) =(R(Z,W)X,Y).

KE =

Proof. The Jacobi identity yields the following 4 equations:
=(R(X,Y)Z,W)+(R(Y,Z2)X, W)+ (R(Z, X
= (R(Y, Z)W, X) + (R(Z, W)Y, X) + (R(W,Y)Z,
=(RW,2)X,)Y)+ (R(X,W)Z,Y)+ (R(Z, X
(RIX, W)Y, Z)+ (R(Y, X)W, Z) + (RW,Y)X, Z).

0

The following theorem tells us that the sectional curvature completely determine the curvature
tensor R.

Theorem 56. Let V' be a Fuclidean vector space. R: V xV — V bilinear with all the symme-
tries of the curvature tensor of a Riemannian manifold. For any 2-dimensional subspace E C V
with orthonormal basis X,Y define Kgp = (R(X,Y)Y, X). Let R be another such tensor with
KE = Kg for all 2-dimensional subspaces E C V. Then R=R.

Proof. Kp = Kg implies (R(X,Y)Y, X) = (R(X,Y)Y, X) for all X,Y € V. We will show that
we can calculate (R(X,Y)Z, W) for all X,Y,Z, W € V provided we know (R(X,Y)Y, X) for
all X,Y € V. Let X,Y,Z W € V. Define f: R> = R by

f(s,t) =(R(X + sW)Y +tZ)(Y +tZ), X + sW) — (R(X +sZ,)Y +tW)(Y +tW), X + sZ).
For fixed X,Y, Z, W this is polynomial in s and t. We are only interested in the st term: It is
(RW,2)Y, X))+ (RW,Y)Z,X)+ (R(X,2)Y,W) +(R(X,Y)Z, W)
—(R(Z,W)Y,X) —(R(Z, Y)W, X) — (R(X, W)Y, Z) - (R(X,Y)Z, W)

= 4R(X,Y)Z,W) + 2(R(W,Y)Z,X) — 2(R(Z, Y)W, X)
= 4R(X,Y)Z,W) + 2(R(W,Y)Z + R(Y, Z)W, X)
=4R(X,Y)Z W) = 2(R(Z, W)Y, X)
=6(R(X,Y)Z,W).
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Corollary 6. Let M be a Riemannian manifold and p € M. Suppose that Kg = K for all
E C TyM with dim E = 2. Then
RX,Y)Z =K({(Z,Y)X —(Z,X)Y).

Proof. Define R by this formula. Then R(X,Y) is skew in X, Y and
(R(X,Y)Z,W) = K({Y,Z){(X, W) — (Z, X)(Y,W))
is skew in Z, W. Finally,
R(X,Y)Z+ R(Y,Z2)X + R(Z, X)Y
=K{(ZY)X —(Z, X)Y +(X,2)Y —(X,Y)Z+ (Y, X)Z - (Y, Z)X) =0.
and if X,Y € T,M is an orthonormal basis then
Kp=K(Y,Y)X —(Y,X)Y,X) = K.

17. JACOBI FIELDS

Let v: [0, L] — M be a geodesic and «: (—¢,¢) x [0, L] — M be a geodesic variation of =, i.e.
v = aft,.) is a geodesic for all t € (—e,e). Then the corresponding variational vector field
Y € T'(v*TM) along ~,

Oa

sz = a7 ’
ot (0,)

is called a Jacobi field.

Lemma 6. Let o be a variation of a curve, V.= a*V and R = o*R. Then

V oV 2a=R(— = v 5 2o
Vagvaga R(as,a)asaJrVngaS
Proof. Since V is torsion-free we have V o %a =Va %a. The equation then follows from
ds ot
(£, 2]=0. O

ds’ Ot
Theorem 57. A vector field Y € T'(v*TM) is a Jacobi field if and only if it satisfies

Y+ R(Y,v )y =0.

Proof. ”=": With the lemma above evaluated for (0, s) we obtain

o 0

v — Rp(Z Z\O
+Vv 0,s) R(887 at)asa (0,)

Y" = R(Z, %)%a’(%) 2V £af = R(Y,Y)Y.

7<": Suppose a vector field Y along v satisfies Y + R(Y,~')y’ = 0. We want to construct a
geodesic variation « such that g = v and with variational vector field Y. The solution of a
linear second order ordinary differential equation Y is uniquely prescribed by Y (0) and Y’(0).
In particular the Jacobi fields form a 2n-dimensional vector space. Denote p := 7(0). By the
first part of the prove it is enough to show that for each V,W € T,M there exists a geodesic
variation « of v with variational vector field Y which satisfies Y (0) = V and Y’(0) = W: The
curve n: (—¢,€) — M, n(t) = exp(tV) is defined for € > 0 small enough. Define a parallel vector
field W along 1 with Wy = W. Similarly, let U be parallel along 7 such that Uy = ~'(0). Now

define a: [0, L] x (—¢,e) — M by a(s, t) = exp(s(U;+tW;)), for e > 0 small enough. Clearly, ais
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a geodesic variation of v. From Uy, W; € T, M we get v,(0) = n(t) and hence Y (0) = '(0) = V.

Moreover, Y'(0) = &/(0,0) =V 4 o =V, (U+tWy)=Wy=W. O
aks,t):(o,o) E\t:o

Exercise 51. Show that, as claimed in the previous proof, there is € > 0 such that for |t| < e
the geodesic vy, = a(.,t) really lives for time L.

Trivial geodesic variations: :(s) = v(a(t)s + b(t)) with functions ¢ and b such that a(0) = 1,
b(0) = 0. Then the variational vector field is just Y = (a/(0)s + ¥/(0))7/(s). Thus Y’ = d/(0)+
and hence Y = 0. Certainly also R(Y,~') = 0. Thus Y is a Jacobi field.

Interesting Jacobi fields are orthogonal to 7': Let Y be a Jacobi-field. Then f: [0,L] — R,
f ={(Y,9). Then f' = (Y',+) and f" = (Y",4') = —(R(Y,7')7,7') = 0. Thus there are
a,b € R such that f(s) = as + b. In particular, with V := Y (0) and W := Y’(0) we have
£(0) = (V,+"), f'(0) = (W,4/(0)). Then we will have f = 0 provided that VW L +/(0). So
(Y,4') =0 in this case. This defines a (2n — 2)-dimensional space of (interesting) Jacobi fields.
Example 5: Consider M = R™. ThenY Jacobi field along s — p + sv if and only if Y" = 0,
i.e. Y(s) =V + sW for parallel vector fields V,W along ~y (constant).

Example 6: Consider the round sphere S* C R ! and let p,V,W € R"! be orthonormal.
Define ¢ as follows

Y¢(s) == cossp+sins (cost V +sint W).
Then Ys = sins W is a Jacobi field and thus
—sins W =Y"(s) = —R(Y(5),7'(0))7'(0) = —sin sR(W,~)'.

Thus W = R(W,~")y. Ewaluation for s = 0 then yields W = R(W,V)V. In particular, if
E =span{V,W} C T,S", then K = (R(W,V)V,W) = 1.

18. SECOND VARIATIONAL FORMULA

Theorem 58 (Second variational formula). Let a: (—¢,¢e) X (—e,e) x [0,L] — M be a 2-
parameter variation of a geodesic y: [0, L] — M, i.e. «(0,0,s) = ~(s), with fized endpoints, i.e.
a(u,v,0) =v(0) and a(u,v, L) = v(L) for all u,v € (—¢,¢). Let

o o
Xs= — , Y= — , wo(s) = a(u,v,s).
Iul(0,0,5) ooy (8) = aues)
Then
S Bu)0.0) =~ [ (XY 4 R0,
Oudv ’ ’ 0 ’ ’

Remark 14: Actually, that is an astonishing formula. Since the left hand side is symmetric in
u and v, the right hand side must be symmetric in X and Y. Let’s check this first directly: Let
X,Y € T(v*TM) such that Xo = 0 =Yy and X = 0 = Yr. Then with partial integration we
get

L L L L L
/0<X,Y +R(Y,7)7>—/0 <X,Y>+/O <X,R(Y,7)7>——/O <X,Y>+/0 (X, RO, 7)),

which is symmetric in X and Y.
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Proof. First,

9 1 9 L o) o] L 0 o) L o] 0
_F 1= [ (Lo, Za)= [ (VyL2a, L z/ Vo a2
ou (’Yuv) 2au‘/0 <8sa Bsa> /0 < %asa 85a> 0 < %Bua 8Sa>
_ (2q @a>’L _ L<@a Vo La) = — L<ga V5 2a)
- u 0 Os 0 0 u VvV 9 5 - ut vV 0 s/
Os 0 Os

Now, let us take the second derivative:

P B =~ [0V 0 o) = [V 0 0.V o) = [(Z0.V 0V o o)
auav f)/U.U B a’U 0 au ? %85 - 0 a au ’ a 88 0 871, ? @ Qas

L L
—— [ (Vo daVoda) - [(£a.95V s Lo+ RE, L)Ea).
0 ov ds 0 ov

Evaluation at (u,v) = (0,0) yields

62 L L
o) (0,0) == [ (V.4 Za A= [TV + R,
Oudv 0 ov g (u,v)=(0,0) 0
With 7’ = 0 we obtain the desired result. O

19. BONNET-MYERS’S THEOREM

Missing: Integration on manifolds. Let M be compact Riemannian manifold, f € €°°(M).
Then on can define

/ fekR

M

If M is any orientable manifold of dimension n and w € QF(M) then one can define

| w

There is an interesting relation between Topology and geometry (curvature).

Definition 51 (Simply connected). A manifold M is called simply connected if for every smooth
map v: S' — M, S! = 9D?, there is a smooth map f: D* — M such that v = flq1.

Theorem 59. Let M be a simply connected complete Riemannian manifold with constant sec-

tional curvature K > 0. Then M is isometric to a round sphere of radius r = 1/vV K.

Without completeness: only a part of the sphere, without ’simply connected’: RP™ has
also constant sectional curvature. Similar with lense spaces: Identify points on S? c C? that
differ by e?™/? M = S3/ ~.

Theorem 60. M simply connected complete, for all sectional curvature Kg we have i < Kg<
1. Then M is homeomorphic to S™.

Remark 15: For M = CP™ one has % < Kgp <1.

Theorem 61 (Gauss-Bonnet). Let M be compact of dimension 2. Then there is an integer
X(M) < 2 such that

/MK = 2mx(M).

If M, M are orientable, then: x(M) = x(M) < M, M diffeomorphic.
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Definition 52 (Scalar curvature). M Riemannian manifold, p € M, G2(T,M) Grassmanian of
2-planes E C T,M (~ dim Go(T,M) = n(n —1)/2). Then

- )
S = vol(G2 (T, M)) /GQ(TPM) Kg
1s called the scalar curvature.

Definition 53 (Ricci curvature). M Riemannian, p € M, X € T,M, |X| =1, S" 2 C X+ C
T,M. Then

Ric(X, X) = ey [, Kopangoy Y

1s called Ricci curvature.

Let us try something simpler: Choose an orthonormal basis Z1,...,Z, of T,M with Z; = X
and define

n
Ric(X, X) %Z (Zi, X)X, Z;) %ZKSW{XZ}
1=2
Then with AZ := R(Z, X)X deﬁnes an endomorphism of T,M and

M:

Ric(X, X) := %Z (Z:,X)X,Z:) = 25 (AZ;, Z;) = Ltr(A).

Il
—_

i

Thus Ric(X, X) does not depend on the choice of the basis.

Definition 54.
Ric(X,Y) = L-t1(Z = R(Z,X)Y).

Theorem 62. Ric,: T,M x T,M — R is symmetric.
Proof.

n n
Ric(X,Y) %Z (Z;, XY, Z;) %Z (Z,Y)X, Z;) = Ric(Y, X).

Now we have two symmetric bilinear forms on each tangent space, (.,.) and Ric.
Theorem 63 (without proof). Ric(X, X) = Ric(X, X).
Definition 55. Define ric,: T,M — T,M by (ric,X,Y) := Ric(X,Y).

~» Eigenvalues k1, ..., k, of ric, (and eigenvectors) provide useful information.
Definition 56. Z1,...,Z, orthonormal basis of T,M. Then define
S(p) = sy D_(R(Zi, 2;) 2, Zi).
1<J

LN"Ric(Z;,25) = 2 5> (R(Zi, Z5) Z, Zi) Ml)zz (Zi, Z))Z, Zs)
j=1

=l i i=1iZj

3\)—‘

- n(nz—l) Z(R(Zlv Z = Z ric, Z; %tr(ricp).
i<j Jj=1
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Definition 57 (Diameter). Let M be a Riemannian manifold. Then
diam(M) := sup{d(p, q) | p,q € M} € RU {0}

is called the diameter of M.

Theorem 65. M complete ~ diam(M) < oo < M compact.

Proof. 7=": diam(M) < oo, then M closed and bounded, thus compact. "<”: d: M x M — R
is continuous, thus takes its maximum. ~» diam(M) < oo. O

Theorem 66 (Bonnet-Myers). M complete Riemannian manifold, Ric(X, X) > (X, X) all
X € TM. Then diam(M) < 7r.

Proof. Choose p,q € M. L :=d(p,q) > 0. By Hopf-Rinow there is an arclength-parametrized
geodesic v: [0,L] — M with 4(0) = p and (L) = ¢q. Now choose a parallel orthonormal
frame field X1,...,X,, along v with X; = +'. Define Y; € T'(y*TM) by Yi(s) = sin(7?)X;(s).
Define variations a;: (—¢,¢) x [0,L] — M of v by a;(t,s) = exp(tY;(s)), 7¢ = &;(t,.). With
a;(u,v,s) = &;(u+v,s) we have

80@-

ou
Then we use the second variational formula of length: If g: (—¢,¢) — R, g(t) = L(), then g
has a global minimum at ¢ = 0, i.e. 0 < ¢”(0). Thus

L
o
0<g"(0) = 22 L(7,) = — /O (Y, Y + R(Yi /' )).

Since Y(s) = sin(%*) X}, we have Y}/ (s) = —(T)?sin(%%) Xy (s). Thus, for each k,

@ [Con) = [ 0w 2 [0 0 = [ R X

By assumption Ric(X, X) > T%(X, X). Thus summing over k = 2,...,n we get

6041-
= }/’L S) =
(0,0,5) (=) v

(0,0,5)

Then, since fOL sin?(%2) > 0, we get L < 77 O
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