Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 6

(Vector bundles, connections, differential forms)
due 4.12.2017

Exercise 1

Show that the tangent bundle \mathbb{S}^{3} of the round sphere $\mathbb{S}^{3} \subset \mathbb{R}^{4}$ is trivial.
Hint: Show that the vector fields $\varphi_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-x_{2}, x_{1}, x_{4},-x_{3}\right), \varphi_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $\left(x_{3}, x_{4},-x_{1},-x_{2}\right)$ and $\varphi_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(-x_{4}, x_{3},-x_{2}, x_{1}\right)$ form a frame of TS^{3}.

Exercise 2

Let ∇ be a connection on a direct sum $E=E_{1} \oplus E_{2}$ of two vector bundles over M. Show that

$$
\nabla=\left(\begin{array}{cc}
\nabla^{1} & A \\
\tilde{A} & \nabla^{2}
\end{array}\right),
$$

where $\tilde{A} \in \Omega^{1}\left(M, \operatorname{Hom}\left(E_{1}, E_{2}\right)\right), A \in \Omega^{1}\left(M, \operatorname{Hom}\left(E_{2}, E_{1}\right)\right)$ and ∇^{i} are connections on the bundles E_{i}.

Exercise 3

5 points
Let $M=\mathbb{R}^{2}$. Let $J \in \Gamma(\operatorname{EndT} M)$ be the 90° rotation and $\operatorname{det} \in \Omega^{2}(M)$ denote the determinant. Define $*: \Omega^{1}(M) \rightarrow \Omega^{1}(M)$ by $* \omega(X)=-\omega(J X)$. Show that
a) for all $f \in \mathscr{C}^{\infty}(M), d * d f=(\Delta f)$ det, where $\Delta f=\frac{\partial^{2}}{\partial x^{2}} f+\frac{\partial^{2}}{\partial y^{2}} f$,
b) $\omega \in \Omega^{1}(M)$ is closed (i.e. $d \omega=0$), if and only if ω is exact (i.e. $\omega=d f$).

