TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Mathematical

Pinkall / Knöppel http://www3.math.tu-berlin.de/geometrie/Lehre/WS17/DGII/

WS 17

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 6

(Vector bundles, connections, differential forms)

due 4.12.2017

Exercise 1 5 points

Show that the tangent bundle $T\mathbb{S}^3$ of the round sphere $\mathbb{S}^3 \subset \mathbb{R}^4$ is trivial. Hint: Show that the vector fields $\varphi_1(x_1, x_2, x_3, x_4) = (-x_2, x_1, x_4, -x_3), \ \varphi_2(x_1, x_2, x_3, x_4) =$ $(x_3, x_4, -x_1, -x_2)$ and $\varphi_3(x_1, x_2, x_3, x_4) = (-x_4, x_3, -x_2, x_1)$ form a frame of TS³.

Exercise 2 5 points

Let ∇ be a connection on a direct sum $E = E_1 \oplus E_2$ of two vector bundles over M. Show that

$$\nabla = \begin{pmatrix} \nabla^1 & A \\ \tilde{A} & \nabla^2 \end{pmatrix},$$

where $\tilde{A} \in \Omega^1(M, \text{Hom}(E_1, E_2)), A \in \Omega^1(M, \text{Hom}(E_2, E_1))$ and ∇^i are connections on the bundles E_i .

Exercise 3 5 points

Let $M = \mathbb{R}^2$. Let $J \in \Gamma(\text{EndT}M)$ be the 90° rotation and det $\in \Omega^2(M)$ denote the determinant. Define $*: \Omega^1(M) \to \Omega^1(M)$ by $*\omega(X) = -\omega(JX)$. Show that

- a) for all $f \in \mathscr{C}^{\infty}(M)$, $d * df = (\Delta f)$ det, where $\Delta f = \frac{\partial^2}{\partial x^2} f + \frac{\partial^2}{\partial y^2} f$, b) $\omega \in \Omega^1(M)$ is closed (i.e. $d\omega = 0$), if and only if ω is exact (i.e. $\omega = df$).