Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 7

(Connections and differential forms)

due 11.12.2017

Exercise 1

5 points

Let $M \subset \mathbb{R}^2$ be open. On $E = M \times \mathbb{R}^2$ we define two connections ∇ and $\tilde{\nabla}$ as follows:

$$\nabla = d + \begin{pmatrix} 0 & -x \, dy \\ x \, dy & 0 \end{pmatrix}, \quad \tilde{\nabla} = d + \begin{pmatrix} 0 & -x \, dx \\ x \, dx & 0 \end{pmatrix}.$$

Show that (E, ∇) is not trivial. Further construct an explicit isomorphism between $(E, \tilde{\nabla})$ and the trivial bundle (E, d).

Exercise 2

5 points

Let $M = \mathbb{R}^3$. Determine which of the following forms are closed $(d\omega = 0)$ and which are exact $(\omega = d\theta$ for some θ):

a) $\omega = yz \, dx + xz \, dy + xy \, dz$,

b)
$$\omega = x \, dx + x^2 y^2 \, dy + yz \, dz$$
,

c) $\omega = 2xy^2 dx \wedge dy + z dy \wedge dz$.

If ω is exact, please write down the potential form θ explicitly.

Exercise 3

5 points

Let $M = \mathbb{R}^n$. For $\xi \in \Gamma(TM)$, we define $\omega^{\xi} \in \Omega^1(M)$ and $*\omega^{\xi} \in \Omega^{n-1}(M)$ as follows:

$$\omega^{\xi}(X_1) := \langle \xi, X_1 \rangle, \quad *\omega^{\xi}(X_2, \dots, X_n) := \det(\xi, X_2, \dots, X_n), \quad X_1, \dots, X_n \in \Gamma(\mathsf{T}M).$$

Show the following identities:

$$df = \omega^{\operatorname{grad} f}, \quad d * \omega^{\xi} = \operatorname{div}(\xi) \operatorname{det},$$

and for n = 3,

$$d\omega^{\xi} = *\omega^{\operatorname{rot}\xi}.$$