TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Pinkall / Knöppel

http://www3.math.tu-berlin.de/geometrie/Lehre/WS16/DGII/

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 8

(Parallel transport, Riemannian manifolds)

due 18.12.2017

Exercise 1 5 points

Let $M \subset \mathbb{R}$ be an interval and consider the vector bundle $E = M \times \mathbb{R}^k$, $k \in \mathbb{N}$, equipped with some connection ∇ . Show that (E, ∇) is trivial.

Exercise 2 5 points

Let (M, g) be a Riemannian manifold and $\tilde{g} = e^{2u}g$ for some smooth function $u: M \to \mathbb{R}$. Show that between the corresponding Levi-Civita connections the following relation holds:

$$\tilde{\nabla}_X Y = \nabla_X Y + du(X)Y + du(Y)X - g(X,Y)$$
grad u .

Here grad $u \in \Gamma(TM)$ is the vector field uniquely determined by the condition $du(X) = g(\operatorname{grad} u, X)$ for all $X \in \Gamma(TM)$.

Exercise 3 5 points

Let $(M, \langle ., . \rangle)$ be a 2-dimensional Riemannian manifold, ∇ its Levi-Civita connection. Show that there is a function $K \in \mathscr{C}^{\infty}(M)$ such that

$$R^{\nabla}(X,Y)Z = K(\langle Y,Z\rangle X - \langle X,Z\rangle Y), \text{ for all } X,Y,Z\in\Gamma(TM).$$