TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Pinkall / Knöppel

http://www3.math.tu-berlin.de/geometrie/Lehre/WS17/DGII/

.... 1

Differential Geometry II: Analysis and Geometry on Manifolds

Exercise Sheet 9

(Curvature, isometries, geodesics)

due 08.01.2017

Definition: Let $f: M \to N$ be a diffeomorphism and $X \in \Gamma(TM)$. Then the push forward $f_*X \in \Gamma(TN)$ of X is defined by $f_*X := df \circ X \circ f^{-1}$.

Exercise 1 5 points

Let (M, g) and (N, h) be Riemannian manifolds with Levi-Civita connections ∇ and $\tilde{\nabla}$, respectively. Let $f: M \to N$ be an *isometry*, i.e. a diffeomorphism such that $f^*h(X,Y) := h(df(X), df(Y)) = g(X,Y)$ for all $X, Y \in \Gamma(TM)$. Show that

$$\tilde{\nabla}_{f_*X}f_*Y = f_*\left(\nabla_XY\right).$$

Show further that γ is a geodesic in M if and only if $\tilde{\gamma} = f \circ \gamma$ is a geodesic in N.

Exercise 2 5 points

Let $\langle .,. \rangle$ be the Euclidean metric on \mathbb{R}^n and $B := \{x \in \mathbb{R}^n \mid |x|^2 < 1\}$. For $k \in \{-1,0,1\}$ define

 $g_k|_x := \frac{4}{(1+k|x|^2)^2} \langle .,. \rangle.$

Show that for the curvature tensors R_k of the Riemannian manifolds $(B, g_{-1}), (\mathbb{R}^n, g_0)$ and (\mathbb{R}^n, g_1) and for every $X, Y \in \mathbb{R}^n$ the following equation holds:

$$g_k(R_k(X,Y)Y,X) = k(g_k(X,X)g_k(Y,Y) - g_k(X,Y)^2).$$

Exercise 3 5 points

Let M be a Riemannian manifold, $\gamma \colon I \to M$ be a curve which is parametrized with constant speed, and $f \colon M \to M$ be an isometry which fixes γ , i.e. $f \circ \gamma = \gamma$. Furthermore, let

$$\ker(\mathrm{id} - d_{\gamma(t)}f) = \mathbb{R}\dot{\gamma}(t), \text{ for all } t.$$

Then γ is a geodesic.