Technische Universität Berlin Berlin **Mathematical** Institut für Mathematik School Pinkall / Knöppel http://www3.math.tu-berlin.de/geometrie/Lehre/WS17/DGII/ WS 17

# Differential Geometry II: Analysis and Geometry on Manifolds

## Exercise Sheet 12

(Jacobi fields)

due 29.01.2018

#### Exercise 1

#### 5 points

Let (M, g) be a Riemannian manifold with Levi-Civita connection  $\nabla$ , and Y be a Killing field, i.e. a vector field  $Y \in \Gamma(TM)$  such that  $\nabla Y$  is skew-adjoint:

$$g(\nabla_X Y, Z) = -g(X, \nabla_Z Y)$$

for all  $X, Z \in \Gamma(TM)$ . Further, let  $\gamma$  be a geodesic. Show:

 $q(Y, \gamma')$  is constant.

#### Exercise 2

Let M be a Riemannian manifold,  $p \in M$  and  $V, W \in T_pM$  such that  $\exp(V)$  is defined. Further, let Y be the Jacobi field along  $\gamma(t) = \exp(tV)$  given by the initial conditions Y(0) = 0, Y'(0) = W. Show:

 $d_{tV} \exp(tW) = Y(t) \text{ for } t \in [0, 1].$ 

#### Exercise 3

- a) Show that the isometries of  $\mathbb{S}^n$  are restrictions of isometries of  $\mathbb{R}^{n+1}$  which map  $\mathbb{S}^n$  to itself.
- b) Find the Jacobi fields of  $\gamma_1 \colon \mathbb{R} \to \mathbb{R}^n$ ,  $t \mapsto p + tX$ , where  $p, X \in \mathbb{R}^n$ .
- c) Find the Jacobi fields of  $\gamma_2 \colon \mathbb{R} \to \mathbb{S}^n \subset \mathbb{R}^{n+1}, t \mapsto \cos(t)p + \sin(t)X$ , where  $p \in \mathbb{S}^n, X \in T_p \mathbb{S}^n, |X| = 1.$

5 points





### 5 points