Exercise Sheet 1 (22.10.19)

Due date: 29.10.19

- To get the Übungsschein (necessary condition for the oral exam) you need to collect 60% of the total sum of points in each half of the semester. Each exercise sheet has 20 points. The total number of sheets is 12-14.
- Please work in fixed groups of 2 students.
- Please justify each step of your computations. Results without any explanation are not accepted. Please write in a readable way. Unreadable handwriting will not be corrected. Feel free to write your answers either in English or in German.
- Please turn in your homework directly to me at the beginning of the Tutorial or leave it in my letter box (MA 701, Frau Jean Downes). No homework will be accepted after the deadline has passed.

1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two globally Lipschitz continuous functions. Prove that their composition is globally Lipschitz continuous on \mathbb{R}.
2. Prove that the real function

$$
f(x)=\frac{1}{1+x^{2}}
$$

is globally Lipschitz continuous.
3. Use (1) and (2) to prove that the real function

$$
f(x)=\frac{1}{1+\sin ^{2} x}
$$

is globally Lipschitz continuous.
4. Prove that the scalar IVP $(t \geq 0)$

$$
\left\{\begin{array}{l}
\dot{x}=\frac{e^{-t}}{1+\sin ^{2} x} \\
x(0)=1
\end{array}\right.
$$

has a unique solution.

Exercise 2

Consider the following IVP in \mathbb{R} :

$$
\left\{\begin{array}{l}
\dot{x}=t+x \\
x(0)=1
\end{array}\right.
$$

Construct the sequence of Picard iterations and obtain the explicit solution.

Consider the following IVP in \mathbb{R} :

$$
\left\{\begin{array}{l}
\dot{x}=|x|^{p / q} \\
x(0)=0
\end{array}\right.
$$

with $p, q \in \mathbb{N} \backslash\{0\}$.

1. Prove that it has a unique solution if $p>q$.
2. Prove that it has an infinite number of solutions if $p<q$.
3. What can you say if $p=q$?

Exercise 4

Consider the following IVP in \mathbb{R} :

$$
\left\{\begin{array}{l}
\dot{x}=\frac{x^{2}}{x^{2}+\epsilon} \sqrt{|x|} \\
x(0)=0
\end{array}\right.
$$

with $\epsilon>0$. What can you say about existence and uniqueness of its solutions? Is the solution unique if $\epsilon=0$?

Exercise 5

Consider the following IVP in \mathbb{R} :

$$
\left\{\begin{array}{l}
\ddot{x}=2 t \dot{x}+2 x, \\
(x(0), \dot{x}(0))=(1,0) .
\end{array}\right.
$$

Solve the IVP by using a power series expansion around $t=0$.

