Exercise Sheet 13 (28.01.20)

Due date: 04.02.20

- To get the Übungsschein (necessary condition for the oral exam) you need to collect 60% of the total sum of points in each half of the semester. Each exercise sheet has 20 points. The total number of sheets is 12-14.
- Please work in fixed groups of 2 or 3 students.
- Please justify each step of your computations. Results without any explanation are not accepted. Please write in a readable way. Unreadable handwriting will not be corrected. Feel free to write your answers either in English or in German.
- Please turn in your homework directly to me at the beginning of the Tutorial or leave it in my letter box (MA 701, Frau Jean Downes). No homework will be accepted after the deadline has passed.

Let $A \in \mathfrak{g l}(n, \mathbb{R})$ and define the exponential of A as

$$
e^{A}:=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} .
$$

(1) Prove that, if $[A, B]:=A B-B A=0$, then

$$
e^{A+B}=e^{A} e^{B}, \quad A, B \in \mathfrak{g l}(n, \mathbb{R})
$$

(2) Prove that

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}
$$

Exercise 2

In R^{3} with coordinates $x:=\left(x_{1}, x_{2}, x_{3}\right)$ consider the following 2-vector field:

$$
X:=x_{1} \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}+x_{2} \frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}} .
$$

(1) Prove that X is a Poisson 2-vector field.
(2) Construct the Hamiltonian vector field corresponding to the smooth function

$$
H(x):=\frac{1}{2}\left(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}\right)+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}
$$

with $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$.

Prove that the implicit midpoint rule

$$
(\widetilde{q}, \widetilde{p})=(q, p)+\epsilon f\left(\frac{\widetilde{q}+q}{2}, \frac{\widetilde{p}+p}{2}\right), \quad \epsilon \in \mathbb{R},
$$

is a symplectic integrator, i.e., that the map $(q, p) \mapsto(\widetilde{q}, \widetilde{p})$ is a symplectic transformation, whenever applied to a canonical Hamiltonian system $f=\left(\nabla_{p} H,-\nabla_{q} H\right)$, with smooth Hamiltonian $H(q, p): \mathbb{R}^{2 n} \rightarrow \mathbb{R}$.

Exercise 4

Let $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathcal{X}(M)$ be smooth vector fields and $\omega \in \Omega^{2}(M)$ a differential 2-form on M. Prove that

$$
\left.\left.\left.\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]\right\lrcorner \omega=\mathcal{L}_{\mathbf{v}_{1}}\left(\mathbf{v}_{2}\right\lrcorner \omega\right)-\mathbf{v}_{2}\right\lrcorner \mathcal{L}_{\mathbf{v}_{1}} \omega .
$$

Bonus Exercise (optional)
(5 additional pts)

In the canonical Hamiltonian phase space \mathbb{R}^{2} consider a point of mass $m>0$ with Hamiltonian

$$
\mathcal{H}(q, p):=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}, \quad \omega>0 .
$$

Introduce the complex variables

$$
a_{ \pm}(q, p):=\sqrt{\frac{m \omega}{2}}\left(q \pm \frac{i p}{m \omega}\right), \quad i^{2}=-1
$$

(a) Write the Hamiltonian in terms of $a_{ \pm}$.
(b) Compute the Poisson brackets $\left\{a_{+}, a_{-}\right\}$and $\left\{a_{ \pm}, \mathcal{H}\right\}$.
(c) Find and solve the equations of motion for the variables $a_{ \pm}$. Determine the general real solution of the equations of motion in terms of the variables q and p.

