Bounded quasi-selfadjoint operators, their Weyl functions, and special block operator Jacobi matrices

Yu. Arlinskiĭ

A bounded operator T in a separable Hilbert space \mathfrak{H} is called quasi-selfadjoint if $\ker(T - T^*) \neq \{0\}$ and \mathfrak{N} -quasi-selfadjoint if $\mathfrak{N} \supseteq \operatorname{ran}(T - T^*)$, where \mathfrak{N} is a subspace of \mathfrak{H} . An \mathfrak{N} -quasi-selfadjoint operator T is called \mathfrak{N} -simple if the linear hull of $\{T^n\mathfrak{N}, n = 0, 1, \ldots\}$ is dense in \mathfrak{H} . We study the \mathfrak{N} -Weyl function $M(z) = P_{\mathfrak{N}}(T - zI_{\mathfrak{H}})^{-1} \upharpoonright \mathfrak{N}$ of an \mathfrak{N} -quasi-selfadjoint operator and define Schur transformation and Schur parameters of M(z). The main result is that any \mathfrak{N} -quasi-selfadjoint and \mathfrak{N} -simple operator is unitarily equivalent to an operator given by a special block operator Jacobi matrix constructed by means of the Schur parameters of its \mathfrak{N} -Weyl function.

The talk is based on a joint work with L. Klotz.