On negative eigenvalues of a linear pencil

T.Ya. Azizov

Let A and K be selfadjoint operators with $N(A)<\infty$ and $N(K)<\infty$, counting multiplicity, negative eigenvalues, respectively. Let $N(L)$ denote the number of negative eigenvalues of the linear pencil $L(\lambda)=A-\lambda K$. If A is a boundedly invertible operator and K is a bounded operator with a trivial kern then

$$
|N(A)-N(K)| \leq N(L) \leq N(A)+N(K) .
$$

The main result of this talk is:
(a) if there exists a $\gamma>0$ such that $A \geq \gamma K$ or $K \geq \gamma A$ then

$$
N(L)=|N(A)-N(K)| ;
$$

(b) if there exists a $\gamma<0$ such that $A \geq \gamma K$ then $N(L)=N(A)+N(K)$.

The talk is based on the joint works with M.V. Chugunova.
The work is supported by the Russian Foundation for Basic Researches, grant 08-01-00566-a.

