Truncated Toeplitz operators: existence of bounded symbols

A. Baranov

Truncated Toeplitz operators are compressions of usual Toeplitz operators to star-invariant (model) subspaces of H^2 in the disc: if Θ is an inner function and $K_{\Theta} = H^2 \ominus \Theta H^2$, then, for a function ϕ in L^2 on the circle, the truncated Toeplitz operator A_{ϕ} is defined by the formula $A_{\phi}f = P_{\Theta}(\phi f)$ for functions f in K_{Θ} such that ϕf is square integrable. Here P_{Θ} is the projection onto K_{Θ} .

A systematic study of truncated Toeplitz operators was started recently by D. Sarason. In contrast to the classical Toeplitz operators, a truncated Toeplitz operator may be sometimes extended to a bounded operator on K_{Θ} even for an unbounded symbol ϕ . The question, posed by Sarason, is whether boundedness of the operator implies the existence of a bounded symbol. We show that in general the answer to this question is negative. Moreover, we give a description of those inner functions Θ for which the answer is positive. In particular, we show that bounded symbols always exist in the case when Θ is a so-called one-component inner function, that is, the sublevel set $\{z : |\Theta(z)| < \varepsilon\}$ is connected for some $\varepsilon \in (0, 1)$.

The talk is based on joint works with I. Chalendar, E. Fricain, J. Mashreghi and D. Timotin, and with R. Bessonov and V. Kapustin.