The Jacobi matrices approach to Nevanlinna-Pick problems

M. Derevyagin

A modification of the well-known step-by-step process for solving Nevanlinna-Pick problems in the class of \mathbf{R}_0 -functions gives rise to a linear pencil $H - \lambda J$, where H and J are Hermitian tridiagonal matrices. First, we show that J is a positive operator. Then we prove that the corresponding Nevanlinna-Pick problem has a unique solution if and only if a densely defined symmetric operator $J^{-\frac{1}{2}}HJ^{-\frac{1}{2}}$ is self-adjoint. Besides, some criteria for $J^{-\frac{1}{2}}HJ^{-\frac{1}{2}}$ to be self-adjoint are obtained. In the self-adjoint case, we get that multipoint diagonal Padé approximants converge to a unique solution of the Nevanlinna-Pick problem locally uniformly in $\mathbb{C} \setminus \mathbb{R}$.

To show the relation of our approach to the classical one we should notice that, roughly speaking, if all interpolation points tend to infinity simultaneously (that is, the Nevanlinna-Pick problem is approaching a moment problem) then the corresponding matrix J tends to the identity I elementwise. Thus, the proposed scheme extends the classical Jacobi matrix approach to moment problems and Padé approximation for \mathbf{R}_0 -functions.

For the sake of completeness, let us recall that $\varphi \in \mathbf{R}_0$ if it has the following integral representation

$$\varphi(\lambda) = \int_{\mathbb{R}} \frac{d\sigma(t)}{t - \lambda}$$

where σ is a finite positive Borel measure (i.e. $\int_{\mathbb{R}} d\sigma(t) < \infty$).