Hahn-Banach type theorems for normed modules

A.Ya. Helemskii

Let A be a normed algebra, K some class of left normed A-modules. A left normed A-module Z is called *extremely* K-injective if, for every A-module Y and its submodule X, every bounded morphism $X \to Z$ can be extended to a morphism $Y \to Z$ of the same norm. (Thus, Z plays the role of $\mathbb C$ in the classical Hahn-Banach theorem).

In the following theorem we consider, as A, the algebra $\mathcal{B}(L)$ of all bounded operators on an infinite-dimensional Hilbert space L, and, as \mathcal{K} , the class of left Ruan modules (those X with the property $||u+v|| \leq \sqrt{||u||^2 + ||v||^2}$, provided $u, v \in X$ satisfy $u = P \cdot u, v = Q \cdot v$ for some mutually orthogonal projections $P, Q \in \mathcal{B}(L)$). These modules were introduced in connection with attempts to obtain a transparent proof of the Arveson-Wittstock Extension Theorem, one of fundamental principles of quantum functional analysis.

Theorem 1. Let H be an arbitrary Hilbert space, and $L \otimes H$ a Hilbert A-module with the outer multiplication $a \cdot (\xi \otimes \eta) := a(\xi) \otimes \eta$. Then such a module is extremely K-injective.

This theorem, combined with some general facts about Ruan modules, gives, as an easy corollary, Arveson-Wittstock Theorem.

Later Wittstock generalized and strengthened the formulated theorem in several directions. In particular, he proved that, with A and K as above, every dual to a Ruan module is K-injective.

Turn to the opposite class of commutative algebras. What about modules over one of the simplest, the algebra c_0 of vanishing sequences? The following theorem describes extremely \mathcal{K} -injective modules within a certain reasonable class of c_0 -modules. Namely, we call a c_0 -module Z homogeneous, if, for $z', z'' \in Z$, the equalities $||p^n \cdot z'|| = ||p^n \cdot z''||$; $n = 1, 2, \ldots$, where $p^n = (0, \ldots, 0, 1, 0, \ldots)$, imply ||z'|| = ||z''||.

Theorem 2. Let K be a class of homogeneous c_0 -modules, and Z is a non-degenerate homogeneous c_0 -module. Then the module Z^* is extremely K-injective if, and only if, for every n = 1, 2, ..., the normed space $\{p^n \cdot z; z \in Z\}$ is, up to an isometric isomorphism, a dense subspace of $L_1(\Omega_n)$ for some measure space Ω_n .

In particular, all c_0 -modules l_p ; $1 \le p \le \infty$ are extremely \mathcal{K} -injective.

The condition of the non-degeneracy of Z can not be omitted: $Z := l_{\infty}$ provides the relevant counter-example.

One of basic tools of the proof of both theorems is the algebraic "law of adjoint associativity", properly modified to serve in functional analysis.