Compact Toeplitz operators for weighted Bergman spaces on bounded symmetric domains

H. Issa

It is well known that the Berezin transform \tilde{g}^t of the Toeplitz operator T_g^t acting on the Segal-Bargmann space of square integrable entire functions with respect to a time dependent Gaussian measure, is the solution of the heat equation at time t > 0 with initial data g. As it was recently shown, if g is a function on \mathbb{C}^n with a bounded mean oscillation, \tilde{g}^{t_0} vanishes at infinity for **some fixed** time t_0 if and only if \tilde{g}^t vanishes at infinity for **any** time t > 0.

If we replace \mathbb{C}^n by a bounded symmetric domain Ω , we can still define the weighted Berezin transform \tilde{g}_{ν} of the Toeplitz operator T_g^{ν} acting on the weighted Bergman space of Ω . This Berezin transform generalizes the heat transform on \mathbb{C}^n where the time parameter is replaced by the weight parameter. In this talk we consider $\Omega \subset \mathbb{C}^n$ of type (r, a, b) in its Harish-Chandra realization. Under some conditions on the weights ν and ν_0 we show the existance of $C(\nu, \nu_0) > 0$, such that

$$\|\tilde{g}_{\nu_0}\|_{\infty} \leq C(\nu,\nu_0) \|T_g^{\nu}\|_{\nu}$$

for all g in a suitable class of symbols containing $L^{\infty}(\Omega)$. As a consequence we prove that the compactness of T_g^{ν} (or the vanishing of \tilde{g}_{ν} near the boundary of Ω) is **independent** of the weight ν , whenever $g \in L^{\infty}(\Omega)$ and $\nu > C$ where C is a constant depending on (r, a, b).