Total positivity and the Riemann zeta-function

O. Katkova

The sequence $\left\{a_{k}\right\}_{k=0}^{\infty}$ is called m-times positive, $m \in \mathbf{N}$, (totally positive), if all minors of order $\leq m$ (of any order) of the infinite matrix $A=\left(a_{j-i}\right), i, j=$ $0,1,2, \ldots\left(a_{k}=0\right.$ for $\left.k<0\right)$ are nonnegative. The class of corresponding generating functions $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is denoted by $P F_{m}\left(P F_{\infty}\right)$.

In 1953 Aissen, Schoenberg, Whitney and Edrei obtained the full description of functions $f \in P F_{\infty}: f(z)=C z^{n} e^{\gamma z} \prod_{k=1}^{\infty} \frac{1+\alpha_{k} z}{1-\beta_{k} z}$, where $C \geq 0, n \in$ $\mathbf{Z}, \gamma \geq 0, \alpha_{k} \geq 0, \beta_{k} \geq 0, \sum\left(\alpha_{k}+\beta_{k}\right)<\infty$.

We consider the following function

$$
\xi_{1}(z)=\frac{1}{2}\left(z-\frac{1}{4}\right) \pi^{-\sqrt{z} / 2-1 / 4} \Gamma(\sqrt{z} / 2+1 / 4) \zeta(\sqrt{z}+1 / 2)
$$

where ζ is the Riemann ζ-function.
The function ξ_{1} is an entire function of order $\frac{1}{2}$ and the Riemann Hypothesis is equivalent to the statement that ξ_{1} has only real negative zeros. By Theorem of Aissen, Schoenberg, Whitney and Edrei it means that $\xi_{1} \in P F_{\infty}=\cap_{m=1}^{\infty} P F_{m}$.

We obtain the following result.
Theorem. For all $m \in \mathbf{N}$ the sequence of coefficients of ξ_{1} is asymptotically m-times positive, that is for all $m \in \mathbf{N}$ there exists a positive integer N such that all minors of matrix $A_{N}=\left(a_{N+j-i}\right), i=0,1,2, \ldots, m-1, \quad j=$ $o, 1, \ldots\left(a_{k}=0\right.$ for $\left.k<0\right)$ are nonnegative.

