Completeness of translates of entire functions and hypercyclic operators

V.E. Kim

Let $H(\mathbb{C})$ be the space of all entire functions with uniform convergence topology. For a wide class of entire functions (including, for example, Airy functions) we prove that the systems of their translates are complete in $H(\mathbb{C})$. As a corollary we obtain new classes of hypercyclic operators on $H(\mathbb{C})$.

Consider the translation operator on $H(\mathbb{C})$: $f(z) \to S_{\lambda}f(z) \equiv f(z+\lambda)$. A well-known theorem of Godefroy and Shapiro [1] states that every continuous linear operator T on $H(\mathbb{C})$, satisfying $TS_{\lambda} - S_{\lambda}T = 0$ is hypercyclic, if it is not a scalar multiple of the identity. We obtain the following more general result:

Theorem 1. Let $T : H(\mathbb{C}) \to H(\mathbb{C})$ be a continuous linear operator such that $1) \exists a \in \mathbb{C} : TS_{\lambda}f - S_{\lambda}Tf = a\lambda S_{\lambda}f, \forall \lambda \in \mathbb{C}, \forall f \in H(\mathbb{C}); 2) \text{ ker}T \neq \{0\}, \text{ ker}T \neq H(\mathbb{C}).$ Then T is hypercyclic.

This result is based on the following theorem.

Theorem 2. Let $T : H(\mathbb{C}) \to H(\mathbb{C})$ be a continuous linear operator such that $TS_{\lambda}f - S_{\lambda}Tf = \lambda S_{\lambda}f, \forall \lambda \in \mathbb{C}, \forall f \in H(\mathbb{C})$. Then the system $\{S_{\lambda}g, \lambda \in \Lambda \subset \mathbb{C}\}$ is complete in $H(\mathbb{C})$, if $g \in \ker T \setminus \{0\}$ and Λ contains a limit point.

This research was partially supported by the Russian Foundation for Basic Research (porject 08-01-00779)

1. Godefroy G., Shapiro J. H. // J. Funct. Anal. 1991, 98:2, 229–269.