Matrix-valued truncated K-moment problems in several variables

D. Kimsey

In this presentation, the matrix-valued truncated K-moment problem on \mathbb{R}^{d} and \mathbb{C}^{d} will be considered. The matrix-valued truncated K-moment problem on \mathbb{R}^{d} requires necessary and sufficient conditions for a multisequence of Hermitian matrices $\left\{S_{\gamma}\right\}_{\gamma \in \Gamma}$, where Γ is a finite subset of \mathbb{N}_{0}^{d}, to be the corresponding moments of a positive matrix-valued Borel measure σ and also the support of σ must lie in some given non-empty set $K \subseteq \mathbb{R}^{d}$, i.e.

$$
\begin{equation*}
S_{\gamma}=\int_{\mathbb{R}^{d}} \xi^{\gamma} d \sigma(\xi), \quad \gamma \in \Gamma, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{supp} \sigma \subseteq K \tag{2}
\end{equation*}
$$

In a joint work with Hugo J. Woerdeman, given a non-empty set $K \subseteq \mathbb{R}^{d}$ and a finite multisequence, indexed by a certain family of finite subsets of \mathbb{N}_{0}^{d}, of Hermitian matrices we obtain necessary and sufficient conditions for the existence of a finitely atomic measure which satisfies (1) and (2). In particular, our result can handle the case when the indexing set that corresponds to the powers of total degree at most $2 n+1$. We will also discuss a similar result in the complex setting.

