Dislocation problems for periodic Schrödinger operators and mathematical aspects of small angle grain boundaries

M. Kohlmann

In many mathematical models for periodic crystals, the crystal atoms are assumed to be on the lattice sites of a periodic lattice Γ , under the influence of a Γ -periodic potential V, so that the energy levels of the crystal are described by the spectrum of the Schrödinger operator $-\Delta + V$. However, in real crystals, the regular periodic pattern of atomic arrangement is interrupted by crystallographic defects. In this talk, we study models for a translational defect as well as a small angle defect in two-dimensional lattices. We begin with dislocation problems in one dimension and on the strip $\mathbb{R} \times (0, 1)$ to motivate our technical tools and to establish some basic results. Our first goal is to compute estimates for the density of surface states in dislocation problems on \mathbb{R}^2 . Secondly, for a small angle grain boundary with angle $\vartheta > 0$, we show that the spectral gaps of the periodic problem fill with spectrum as $\vartheta \downarrow 0$. The talk is based on a joint work with R. Hempel.