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Let d ∈ N and p ∈ (1,∞). A theorem of Hörmander says that if f : [0,∞) →
C satisfies
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then f is a radial Fourier multiplier on Lp(Rd), i.e. the mapping

Lp(Rd) → Lp(Rd), g 7→ f(−∆)g = [f(| · |2)ĝ]ˇ

is bounded.
We put this into a more general framework. Consider a generator A of a

semigroup with spectrum contained in [0,∞). We compare conditions on the
semigroup with multiplier theorems modeled after Hörmander’s one above.
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