The index formula and the spectral shift function for relatively trace class perturbations

Y. Latushkin

We compute the Fredholm index, $\operatorname{index}(\mathbf{D}_{A})$, of the operator $\mathbf{D}_{A} = (d/dt) + \mathbf{A}$ on $L^{2}(\mathbb{R}; \mathcal{H})$ associated with the operator path $\{A(t)\}_{t=-\infty}^{\infty}$, where $(\mathbf{A}f)(t) = A(t)f(t)$ for a.e. $t \in \mathbb{R}$, and appropriate $f \in L^{2}(\mathbb{R}; \mathcal{H})$, via the spectral shift function $\xi(\cdot; A_{+}, A_{-})$ associated with the pair (A_{+}, A_{-}) of asymptotic operators $A_{\pm} = A(\pm \infty)$ on the separable complex Hilbert space \mathcal{H} in the case when A(t) is generally an unbounded (relatively trace class) perturbation of the unbounded self-adjoint operator A_{-} .

We derive a formula (an extension of a formula due to Pushnitski) relating the spectral shift function $\xi(\cdot; A_+, A_-)$ for the pair (A_+, A_-) , and the corresponding spectral shift function $\xi(\cdot; H_2, H_1)$ for the pair of operators $(H_2, H_1) = (D_A D_A^*, D_A^* D_A)$ in this relative trace class context,

$$\xi(\lambda; \boldsymbol{H}_2, \boldsymbol{H}_1) = \frac{1}{\pi} \int_{-\lambda^{1/2}}^{\lambda^{1/2}} \frac{\xi(\nu; A_+, A_-) \, d\nu}{(\lambda - \nu^2)^{1/2}} \text{ for a.e. } \lambda > 0$$

This formula is then used to identify the Fredholm index of D_A with $\xi(0; A_+, A_-)$. In addition, we prove that $index(D_A)$ coincides with the spectral flow SpFlow($\{A(t)\}_{t=-\infty}^{\infty}$) of the family $\{A(t)\}_{t\in\mathbb{R}}$ and also relate it to the (Fredholm) perturbation determinant for the pair (A_+, A_-) :

$$index(\boldsymbol{D}_{\boldsymbol{A}}) = SpFlow(\{A(t)\}_{t=-\infty}^{\infty}) = \xi(0; A_{+}, A_{-}) = \pi^{-1} Im \ln(\det_{\mathcal{H}}(A_{+}A_{-}^{-1})).$$

We also provide some applications in the context of supersymmetric quantum mechanics to zeta function and heat kernel regularized spectral asymmetries and the eta-invariant.

This is a joint work with F. Geztesy, A. K. Makarov, F. Sukochev, and Y. Tomilov.