Completely bounded norms of right module maps

R. Levene

Let D_n denote the algebra of diagonal $n \times n$ matrices. If T is a a Schur multiplier on the $m \times n$ matrices $M_{m,n}$ (that is, T is a $D_m - D_n$ bimodule map), then it is well-known that $||T||_{cb} = ||T||$. Using Timoney's work on elementary operators, we show that if T is merely a right D_2 -module map on $M_{m,2}$, then again we have $||T||_{cb} = ||T||$. However,

$$C(m,n) = \sup\left\{\frac{\|T\|_{cb}}{\|T\|} : T \text{ is a right } D_n \text{-module map on } M_{m,n}\right\}$$

grows with m, n. Hence there is a bounded right ℓ^{∞} -module map on $B(\ell 2)$ which is not completely bounded, answering a question posed in a recent paper of Juschenko, the speaker, Todorov and Turowska.

This is joint work with R. Timoney.