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In this talk I am going to present a theory of Sturm Liouville vessels (devel-
oped in the finite-dimensional case in [M2], and originated in [Li, P, MV1,
MVc, M, BV]), applied to the study of the inverse Problem in the quan-
tum theory of scattering [F, LxPh]. This theory is a special case of a more
general theory of vessels [AMV]. In the classical case, under assumption∫ ∞

0
x|q(x)|dx < ∞ on the potential q(x), one is interested in solutions of the

Sturm Liouville (SL) differential equation [L, S]

− d2

dx2
y(x) + q(x)y(x) = λy(x), λ ∈ C (1)

and compares them to the pure exponents, which can be viewed as solutions
of the trivial SL equation, corresponding to q(x) = 0.

Transfer function of a Sturm Liouville vessel is of the form

S(x, λ) = I2 − B∗(x)X−1(x)(λI − A)−1B(x)

[
0 1
1 0

]
,

where A, X(x) are bounded operators on a Hilbert space H, B(x) : H → C2

is bounded. Operators depends continuously on x and satisfy vessel condi-
tions, which are linear differential equations. For a fixed x = x0, the function
S(x, λ) is a realization of a Schur class function and Schur algorithm arises in
the study of this problem, which actually corresponds to finite dimensional
vessels [M2]. There also arises an interesting connection to Crum transfor-
mations [Crum] in that case.

We will construct Jost solutions and study the role of the tau func-
tion τ(x) = det X(x), where X(x) = I + T (X), for a trace class oper-
ator T (x). Moreover, functions Ω(x, y), K(x, y) satisfying Gelfan-Levitan-
Marchenko equation [F, Mar] will be constructed using the vessel.
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