On the shift semigroup on the Hardy space of Dirichlet series

A. Olofsson

We consider the Hardy space \mathcal{H}^2 of Dirichlet series

$$f(s) = \sum_{n=1}^{+\infty} a_n n^{-s}, \quad \Re(s) > 1/2,$$

with finite norm

$$||f||_{\mathcal{H}^2}^2 = \sum_{n=1}^{+\infty} |a_n|^2 < +\infty.$$

The space \mathcal{H}^2 was introduced by Hedenmalm, Lindqvist and Seip in their in 1997 paper as a Dirichlet series counterpart of the standard Hardy space of the unit disc.

For every positive integer $n \in \mathbb{Z}^+$ we have a natural operator S(n) acting on \mathcal{H}_2 given by multiplication by the Dirichlet monomial n^{-s} , that is,

$$S(n)f(s) = n^{-s}f(s), \quad \Re(s) > 1/2,$$

for $f \in \mathcal{H}^2$. This provides us with a function $S : \mathbb{Z}^+ \ni n \mapsto S(n)$ which is easily seen to be a multiplicative semigroup of isometries. We characterize this shift semigroup $S : \mathbb{Z}^+ \to \mathcal{L}(\mathcal{H}^2)$ up to unitary equivalence by means of a Wold decomposition. As an application we have that a shift invariant subspace of \mathcal{H}^2 is unitarily equivalent to \mathcal{H}^2 if and only if it has the form $\varphi \mathcal{H}^2$ for some \mathcal{H}^2 -inner function φ .