Locally definite normal operators in Krein spaces

F. Philipp

Let N be a bounded normal operator in the Krein space $(\mathcal{H}, [\cdot, \cdot])$, i.e. $NN^+ = N^+N$, where N^+ denotes the Krein space adjoint of N. We say that a number $\lambda \in \sigma_{ap}(N)$ is a spectral point of positive type of N if for every sequence $(x_n) \subset \mathcal{H}$ with $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $(N - \lambda)x_n \to 0$ as $n \to \infty$ we have

 $\liminf_{n \to \infty} \left[x_n, x_n \right] > 0.$

In the paper [1] the authors showed that there exists a local spectral function for the *selfadjoint* operator N on an interval Δ if every spectral point of N in Δ is of positive type. For normal operators we prove the following theorem.

Theorem. Assume that $\sigma(\operatorname{Re} N) \subset \mathbb{R}$, $\sigma(\operatorname{Im} N) \subset \mathbb{R}$ and that there exist M > 0, $n \in \mathbb{N}$ and an open neighborhood \mathcal{U} of $\sigma(\operatorname{Im} N)$ in \mathbb{C} such that

 $\|(\operatorname{Im} N - \lambda)^{-1}\| \leq M |\operatorname{Im} \lambda|^{-n} \quad for \ all \ \lambda \in \mathcal{U} \setminus \mathbb{R}.$

If $R \subset \mathbb{C}$ is a closed rectangle such that every spectral point of N in R is of positive type with respect to N, then N has a local spectral function on R.

This talk is based on a joint work with C. Trunk and V. Strauss.

References

 H. Langer, A. Markus, V. Matsaev: Locally definite operators in indefinite inner product spaces. Math. Ann. 308 (1997), 405–424.