# One-dimensional and multidimensional spectral order 

A. Płaneta

As shown by Kadison, the set $\mathcal{S}$ of all bounded selfadjoint operators on a complex Hilbert space $\mathcal{H}$ is an anti-lattice, which means that for $A, B \in$ $\mathcal{S}$, a greatest lower bound for $A$ and $B$ exists with respect to the usual ordering " $\leqslant$ " in $\mathcal{S}$ if and only if $A$ and $B$ are comparable (cf. [1]). A little bit earlier, Sherman proved that if the set of all selfadjoint elements of a $C^{*}$-algebra $\mathcal{A}$ of bounded linear operators on $\mathcal{H}$ is lattice ordered by " $\leqslant$ ", then $\mathcal{A}$ is commutative (cf. [3]). To overcome these disadvantages of the partial order " $\leqslant$ ", Olson introduced in 1971 the so called spectral order, which is denoted by "ß". He proved, among other things, that the set of all selfadjoint elements of a von Neumann algebra of bounded linear operators on $\mathcal{H}$ is a conditionally complete lattice with respect to the spectral order (cf. [2]).

We extend the spectral order to the case of $n$-tuples of spectrally commuting selfadjoint operators and investigate its properties.

## References

[1] R. V. Kadison, Order properties of bounded self-adjoint operators, Proc. Amer. Math. Soc. 2 (1951), 505-510.
[2] M. P. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc. 28 (1971), 537-544.
[3] S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951), 227-232.

The talk is based on a joint work with J. Stochel.
This work is supported by MNiSzW Grant N N201 526638.

