Convergence of the Dirichlet-to-Neumann map on thin branched manifolds

O. Post

We consider a family of manifolds $(X_{\varepsilon})_{\varepsilon}$ that shrinks to a metric graph X_0 as $\varepsilon \to 0$, i.e., a topological graph where each edge is assigned a length. A simple example is given by the (smoothed) surface of the ε -tubular neighbourhood of X_0 . Let Y_0 be the set of vertices of degree 1, and Y_{ε} the corresponding boundary of X_{ε} . Using boundary triples based on first order Sobolev spaces, we can define the Dirichlet-to-Neumann map $\Lambda_{\varepsilon}(z)$ associated to the boundary Y_{ε} in X_{ε} and a Laplace-type operator $\Delta_{\varepsilon} \geq 0$ for $\varepsilon \geq 0$. In particular, for suitable φ on Y_{ε} , we let $\Lambda_{\varepsilon}(z)\varphi$ be the "normal" derivative of the Dirichlet solution h of $(\Delta_{\varepsilon} - z)h = 0$ with boundary data φ .

Our main result is the convergence of the Dirichlet-to-Neumann map $\Lambda_{\varepsilon}(z)$ to $\Lambda_0(z)$ in a suitable sense, since the operators act in different spaces. In this way, we can approximately calculate the Dirichlet-to-Neumann operator on the more complicated space X_{ε} in terms of the simpler one on X_0 . The talk is based on a joint work with J. Behrndt.