H-expansive matrices in indefinite inner product spaces and their invariant subspaces

D. Janse van Rensburg

We considered indefinite inner products given by a square real invertible symmetric matrix $H=H^{T}:[x, y]=(H x, y)$. On the Euclidean space equipped with this indefinite inner product, we consider matrices A for which $A^{*} H A-H$ is nonnegative. Such matrices are called H-expansive matrices.

We are interested in the construction of complex (as well as real) A invariant maximal H-nonnegative and nonpositive subspaces. The complex case has already been shown if one uses a suitable Cayley transform. The problem arises when A is real and $A^{T} H A-H$ is nonnegative and A has both 1 and -1 as eigenvalues. The uniqueness and stability of these subspaces are also studied.

The talk is based on a joint work with J.H. Fourie, G.J. Groenewald and A.C.M. Ran.

