The Riemann - Hilbert boundary value problem with a countable set of coefficient and two - side curling at infinity of order less then 1/2

P. Shabalin

Let L be the real axis at the plane of the complex variable $z, D=$ $\{z, \operatorname{Im} z>0\}$. We need to find an analytic function $F(z)$ in the domain D by the boundary condition $a(t) \operatorname{Re} F(t)-b(t) \operatorname{Im} F(t)=c(t), \quad t \in L$, where $a(t), b(t), c(t)$ are given real functions on L, continuous everywhere except of ordinary discontinuity points $t_{k}, k= \pm 1, \pm 2, \cdots, \lim _{k \rightarrow \pm \infty} t_{k}= \pm \infty$.

Let us denote $G(t)=a(t)-i b(t)$ and let $\nu(t)=\arg G(t)$ be the branch defined on every interval of continuity of coefficients, so that the numbers $\delta_{k}=\nu\left(t_{k}+0\right)-\nu\left(t_{k}-0\right)$ satisfy conditions $0 \leq \delta_{k}<2 \pi, k= \pm 1, \pm 2, \cdots$. Now let us denote $\kappa_{k}=\delta_{k} / \pi-\left[\delta_{k} / \pi\right], k= \pm 1, \pm 2, \cdots$, where $0 \leq \kappa_{k}<1$. Let's consider that $\varphi_{1}(t)$ - the continuous component of function $\nu(t)$, satisfies to a condition $\varphi_{1}(t)=\nu^{-} t^{\rho}+\tilde{\nu}(t), t>0, \quad \varphi_{1}(t)=\nu^{+}|t|^{\rho}+\tilde{\nu}(t), t<0$, where ν^{-}, ν^{+}, ρ are constant, $0<\rho<1 / 2, \tilde{\nu}(t) \in H_{L}(\mu), 0<\mu \leq 1$. We denote $n_{-}^{*}(x)=\sum_{j=1}^{k-1} \kappa_{-j},-t_{-k+1} \leq x<-t_{-k}, n_{+}^{*}(x)=\sum_{j=1}^{k-1} \kappa_{j}, t_{k-1} \leq$ $x<t_{k}$. Assume that the numbers t_{j}, κ_{j} are satisfy the conditions $n_{+}^{*}(x)=$ $\Delta_{+} x^{\kappa_{+}}+o\left(x^{\kappa_{+}}\right), \quad n_{-}^{*}(x)=\Delta_{-} x^{\kappa_{-}}+o\left(x^{\kappa_{-}}\right), \quad x \rightarrow+\infty$, where $\kappa_{+}, \kappa_{-}, \Delta_{+}$, Δ_{-}are positive constants $\kappa_{-}<1 / 2, \kappa_{+}<1 / 2$. We set that $n_{-}^{*}\left(-t_{-k}\right)-$ $\Delta_{-}\left(-t_{-k}\right)^{\kappa_{-}}=p_{-k}, \quad n_{+}^{*}\left(t_{k}\right)-\Delta_{+}\left(t_{k}\right)^{\kappa_{+}}=p_{k}$ where we choose the numbers $p_{-k}, p_{k}, t_{-k}, t_{k}$ so that the inequalities $p_{-k}=-n_{-}^{*}\left(-t_{-k}\right)+\Delta_{-}\left(-t_{-(k+1)}\right)^{\kappa_{-}}$, $p_{k}=-n_{+}^{*}\left(t_{k}\right)+\Delta_{+}\left(t_{k+1}\right)^{\kappa_{+}}$are fulfilled. At the given restrictions full research of resolvability of a homogeneous problem in one class is conducted. The formula of the common decision of an unhomogeneous problem is proved.

The talk is based on a joint work with R. Salimov.

