# Spectral problem for a class of non-self-adjoint Jacobi matrices 

M. Tyaglov

We study the distribution of eigenvalues of tridiagonal matrices of the form

$$
J_{n}^{(k)}=\left(\begin{array}{cccccc}
a & b_{1} & 0 & \ldots & 0 & 0  \tag{1}\\
c_{1} & 0 & b_{2} & \ldots & 0 & 0 \\
0 & c_{2} & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & b_{n-1} \\
0 & 0 & 0 & \ldots & c_{n-1} & 0
\end{array}\right),
$$

where $a \in \mathbb{R}, c_{j}>0$ and, for some number $k, 0 \leqslant k \leqslant n-1$,

$$
\begin{aligned}
& b_{j}<0 \quad \text { whenever } \quad j \leqslant k, \\
& b_{j}>0 \quad \text { whenever } \quad j>k .
\end{aligned}
$$

It is established that for any $k, 0 \leqslant k \leqslant n-1$, the characteristic polynomial of the matrix $J_{n}^{(k)}$ is a generalized Hurwitz polynomial [1]. Conversely, for any generalized Hurwitz polynomial $p$ of degree $n$, there exists a unique matrix of the form (1) whose characteristic polynomial is $p$. Special cases of $k=0$ and $k=n-1$ are particularly discussed.

## References

[1] M. Tyaglov, Generalized Hurwitz polynomials, in preparation.

